ﻻ يوجد ملخص باللغة العربية
Correlation effects in CuO$_2$ layers give rise to a complicated landscape of collective excitations in high-T$_{rm c}$ cuprates. Their description requires an accurate account for electronic fluctuations at a very broad energy range and remains a challenge for the theory. Particularly, there is no conventional explanation of the experimentally observed `resonant antiferromagnetic mode, which is often considered to be a mediator of superconductivity. Here we model spin excitations of the hole-doped cuprates in the paramagnetic regime and show that this antiferromagnetic mode is associated with electronic transitions between anti-nodal X and Y points of the quasiparticle band that is pinned to the Fermi level. We observe that upon doping of 7-12% the electronic spectral weight redistribution leads to the formation of a very stable quasiparticle dispersion due to strong correlation effects. The reconstruction of the Fermi surface results in a flattening of the quasiparticle band at the vicinity of the nodal ${rm M}Gamma/2$ point, accompanied by a high density of charge carriers. Collective excitations of electrons between the nodal ${rm M}Gamma/2$ and ${rm XM}/2$ points form the additional magnetic holes state in magnetic spectrum, which protects the antiferromagnetic fluctuation. Further investigation of the evolution of spin fluctuations with the temperature and doping allowed us to observe the incipience of the antiferromagnetic ordering already in the paramagnetic regime above the transition temperature. Additionally, apart from the most intensive low-energy magnetic excitations, the magnetic spectrum reveals less intensive collective spin fluctuations that correspond to electronic processes between peaks of the single-particle spectral function.
We study the electronic structure of the ladder compounds (SrCa)CuO 14-24-41 and SrCuO 123. LDA calculations for both give similar Cu 3d-bands near the Fermi energy. The hopping parameters estimated by fitting LDA energy bands show a strong anisotrop
Magnetic structures of organic Mott insulators X[Pd(dmit)2]2 (X=Me4P, Me4Sb), of which electronic states are located near quantum spin liquid (X=EtMe3Sb), are demonstrated by 13C NMR. Antiferromagnetic spectra and nuclear relaxations show two distinc
Unconventional symmetry-breaking phenomena due to nontrivial order parameters attract increasing attention in strongly correlated electron systems. Here, we predict theoretically the occurrence of nanoscale spontaneous spin-current, called the spin l
The electronic structure of a new charge-density-wave/ superconductor system, 1T-CuxTiSe2, has been studied by photoemission spectroscopy. A correlated semiconductor band structure is revealed for the undoped case. With Cu doping, the charge density
Among heavy-fermion metals, Ce$_3$Pd$_{20}$Si$_6$ is one of the heaviest-electron systems known to date. Here we used high-resolution neutron spectroscopy to observe low-energy magnetic scattering from a single crystal of this compound in the paramag