ﻻ يوجد ملخص باللغة العربية
In simulations, probabilistic algorithms and statistical tests, we often generate random integers in an interval (e.g., [0,s)). For example, random integers in an interval are essential to the Fisher-Yates random shuffle. Consequently, popular languages like Java, Python, C++, Swift and Go include ranged random integer generation functions as part of their runtime libraries. Pseudo-random values are usually generated in words of a fixed number of bits (e.g., 32 bits, 64 bits) using algorithms such as a linear congruential generator. We need functions to convert such random words to random integers in an interval ([0,s)) without introducing statistical biases. The standard functions in programming languages such as Java involve integer divisions. Unfortunately, division instructions are relatively expensive. We review an unbiased function to generate ranged integers from a source of random words that avoids integer divisions with high probability. To establish the practical usefulness of the approach, we show that this algorithm can multiply the speed of unbiased random shuffling on x64 processors. Our proposed approach has been adopted by the Go language for its implementation of the shuffle function.
random_tree() is a linear time and space C++ implementation able to create trees of up to a billion nodes for genetic programming and genetic improvement experiments. A 3.60GHz CPU can generate more than 18 million random nodes for GP program trees per second.
In this paper, we develop a simple and fast online algorithm for solving a class of binary integer linear programs (LPs) arisen in general resource allocation problem. The algorithm requires only one single pass through the input data and is free of
We initiate the study of a new parameterization of graph problems. In a multiple interval representation of a graph, each vertex is associated to at least one interval of the real line, with an edge between two vertices if and only if an interval ass
We propose algorithms for construction and random generation of hypergraphs without loops and with prescribed degree and dimension sequences. The objective is to provide a starting point for as well as an alternative to Markov chain Monte Carlo appro
We study the online maximum coverage problem on a line, in which, given an online sequence of sub-intervals (which may intersect among each other) of a target large interval and an integer $k$, we aim to select at most $k$ of the sub-intervals such t