ﻻ يوجد ملخص باللغة العربية
We extend to binary relational systems the notion of compact and normal structure, introduced by J.P.Penot for metric spaces, and we prove that for the involutive and reflexive ones, every commuting family of relational homomorphisms has a common fixed point. The proof is based upon the clever argument that J.B.Baillon discovered in order to show that a similar conclusion holds for bounded hyperconvex metric spaces and then refined by the first author to metric spaces with a compact and normal structure. Since the non-expansive mappings are relational homomorphisms, our result includes those of T.C.Lim, J.B.Baillon and the first author. We show that it extends the Tarskis fixed point theorem to graphs which are retracts of reflexive oriented zigzags of bounded length. Doing so, we illustrate the fact that the consideration of binary relational systems or of generalized metric spaces are equivalent.
In this survey we present a generalization of the notion of metric space and some applications to discrete structures as graphs, ordered sets and transition systems. Results in that direction started in the middle eighties based on the impulse given
The aim of this paper is to provide characterizations of a Meir-Keeler type mapping and a fixed point theorem for the mapping in a metric space endowed with a transitive relation.
We obtain an extended Reich fixed point theorem for the setting of generalized cone rectangular metric spaces without assuming the normality of the underlying cone. Our work is a generalization of the main result in cite{AAB} and cite{JS}.
We establish two fixed point theorems for certain mappings of contractive type. The first result is concerned with the case where such mappings take a nonempty, closed subset of a complete metric space $X$ into $X$, and the second with an application
Lins theorem states that for all $epsilon > 0$, there is a $delta > 0$ such that for all $n geq 1$ if self-adjoint contractions $A,B in M_n(mathbb{C})$ satisfy $|[A,B]|leq delta$ then there are self-adjoint contractions $A,B in M_n(mathbb{C})$ with $