ﻻ يوجد ملخص باللغة العربية
We study systems of bosons and fermions in finite periodic boxes and show how the existence and properties of few-body resonances can be extracted from studying the volume dependence of the calculated energy spectra. Using a plane-wave-based discrete variable representation to conveniently implement periodic boundary conditions, we establish that avoided level crossings occur in the spectra of up to four particles and can be linked to the existence of multi-body resonances. To benchmark our method we use two-body calculations, where resonance properties can be determined with other methods, as well as a three-boson model interaction known to generate a three-boson resonance state. Finding good agreement for these cases, we then predict three-body and four-body resonances for models using a shifted Gaussian potential. Our results establish few-body finite-volume calculations as a new tool to study few-body resonances. In particular, the approach can be used to study few-neutron systems, where such states have been conjectured to exist.
The structures of the hyperon resonance $Lambda (1405)$ and the scalar mesons $sigma$, $f_{0}(980)$, and $a_{0}(980)$ are investigated based on the coupled-channels chiral dynamics with finite volume effect. The finite volume effect is utilized to ex
Pionless effective field theory in a finite volume (FVEFT$_{pi!/}$) is investigated as a framework for the analysis of multi-nucleon spectra and matrix elements calculated in lattice QCD (LQCD). By combining FVEFT$_{pi!/}$ with the stochastic variati
We show that the contributions of three-quasiparticle interactions to normal Fermi systems at low energies and temperatures are suppressed by n_q/n compared to two-body interactions, where n_q is the density of excited or added quasiparticles and n i
Hadronic composite states are introduced as few-body systems in hadron physics. The $Lambda(1405)$ resonance is a good example of the hadronic few-body systems. It has turned out that $Lambda(1405)$ can be described by hadronic dynamics in a modern t
We resum the ladder diagrams for the calculation of the energy density $cal{E}$ of a spin 1/2 fermion many-body system in terms of arbitrary vacuum two-body scattering amplitudes. The partial-wave decomposition of the in-medium two-body scattering am