ترغب بنشر مسار تعليمي؟ اضغط هنا

Photoionization of Xe and Rn from the relativistic random-phase theory

463   0   0.0 ( 0 )
 نشر من قبل Chenkai Qiao
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Photoionization cross section $sigma_{nkappa}$, asymmetry parameter $beta_{nkappa}$, and polarization parameters $xi_{nkappa}$, $eta_{nkappa}$, $zeta_{nkappa}$ of Xe and Rn are calculated in the fully relativistic formalism. To deal with the relativistic and correlation effects, we adopt the relativistic random-phase theory with channel couplings among different subshells. Energy ranges for giant emph{d}-resonance regions are especially considered.



قيم البحث

اقرأ أيضاً

251 - M. Ya. Amusia 2006
We demonstrate rather interesting manifestations of co-existence of resonance features in characteristics of the photoionization of 3d-electrons in Xe@C60. It is shown that the reflection of photoelectrons produced by the 3d Xe photoionization affect s greatly partial photoionization cross-sections of and levels and respective angular anisotropy parameters, both dipole and non-dipole adding to all of them additional maximums and minimums. The calculations are performed treating the 3/2 and 5/2 electrons as electrons of different kinds with their spins up and down. The effect of C60 shell is accounted for in the frame of the orange skin potential model.
351 - Shiyang Zhong 2020
The photoionization of xenon atoms in the 70-100 eV range reveals several fascinating physical phenomena such as a giant resonance induced by the dynamic rearrangement of the electron cloud after photon absorption, an anomalous branching ratio betwee n intermediate Xe$^+$ states separated by the spin-orbit interaction and multiple Auger decay processes. These phenomena have been studied in the past, using in particular synchrotron radiation, but without access to real-time dynamics. Here, we study the dynamics of Xe 4d photoionization on its natural time scale combining attosecond interferometry and coincidence spectroscopy. A time-frequency analysis of the involved transitions allows us to identify two interfering ionization mechanisms: the broad giant dipole resonance with a fast decay time less than 50 as and a narrow resonance at threshold induced by spin-flip transitions, with much longer decay times of several hundred as. Our results provide new insight into the complex electron-spin dynamics of photo-induced phenomena.
We present experimental and theoretical results of a detailed study of laser-induced continuum structures (LICS) in the photoionization continuum of helium out of the metastable state 2s $^1S_0$. The continuum dressing with a 1064 nm laser, couples t he same region of the continuum to the {4s $^1S_0$} state. The experimental data, presented for a range of intensities, show pronounced ionization suppression (by as much as 70% with respect to the far-from-resonance value) as well as enhancement, in a Beutler-Fano resonance profile. This ionization suppression is a clear indication of population trapping mediated by coupling to a contiuum. We present experimental results demonstrating the effect of pulse delay upon the LICS, and for the behavior of LICS for both weak and strong probe pulses. Simulations based upon numerical solution of the Schr{o}dinger equation model the experimental results. The atomic parameters (Rabi frequencies and Stark shifts) are calculated using a simple model-potential method for the computation of the needed wavefunctions. The simulations of the LICS profiles are in excellent agreement with experiment. We also present an analytic formulation of pulsed LICS. We show that in the case of a probe pulse shorter than the dressing one the LICS profile is the convolution of the power spectra of the probe pulse with the usual Fano profile of stationary LICS. We discuss some consequences of deviation from steady-state theory.
We study the x-ray emission following the collision of a Bi$^{83+}$ ion with a neutral Xe atom at the projectile energy 70 MeV/u. The collisional and post-collisional processes are treated separately. The probabilities of various many-electron proces ses at the collision are calculated within a relativistic independent electron model using the coupled-channel approach with atomic-like Dirac-Fock-Sturm orbitals. The analysis of the post-collisional processes resulting in the x-ray emission is based on the fluorescence yields, the radiation and Auger decay rates, and allows to derive intensities of the x-ray emission and compare them with experimental data. A reasonable agreement between the theoretical results and the recent experimental data is observed. The role of the relativistic effects is investigated.
Photoionization of Kr$^+$ ions was studied in the energy range from 23.3 eV to 39.0 eV at a photon energy resolution of 7.5 meV. Absolute measurements were performed by merging beams of Kr$^+$ ions and of monochromatized synchrotron undulator radiati on. Photoionization (PI) of this Br-like ion is characterized by multiple Rydberg series of autoionizing resonances superimposed on a direct photoionization continuum. Resonance features observed in the experimental spectra are spectroscopically assigned and their energies and quantum defects tabulated. The high-resolution cross-section measurements are benchmarked against state-of-the-art theoretical cross-section calculations from the Dirac-Coulomb R-matrix method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا