The measured $B$-meson semi-leptonic branching ratios $R_{D}$ and $R_{D^*}$ have long-standing deviations between theory and experiment. We introduce a model which explains both anomalies through a single interaction by introducing a right-handed neutrino as the missing energy particle. This interaction is mediated by a heavy charged vector boson ($W$) which couples only to right-handed quarks and leptons of the Standard Model through the mixing of these particles with new vector-like fermions. Previous $W$ models for the $R_{D^{(*)}}$ anomaly were strongly constrained from flavor changing neutral currents and direct collider searches for $Ztotautau$ resonances. We show that relying on right-handed fermion mixing enables us to avoid these constraints, as well as other severe bounds from electroweak precision tests and neutrino mixing.