Lefschetz properties of monomial ideals with almost linear resolution


الملخص بالإنكليزية

We study the WLP and SLP of artinian monomial ideals in $S=mathbb{K}[x_1,dots ,x_n]$ via studying their minimal free resolutions. We study the Lefschetz properties of such ideals where the minimal free resolution of $S/I$ is linear for at least $n-2$ steps. We give an affirmative answer to a conjecture of Eisenbud, Huneke and Ulrich for artinian monomial ideals with almost linear resolutions.

تحميل البحث