ﻻ يوجد ملخص باللغة العربية
We analyze the properties of a sample of long gamma-ray bursts (LGRBs) detected by the Fermi satellite that have a spectroscopic redshift and good follow-up coverage at both X-ray and optical/nIR wavelengths. The evolution of LGRB afterglows depends on the density profile of the external medium, enabling us to separate wind or ISM-like environments based on the observations. We do this by identifying the environment that provides the best agreement between estimates of $p$, the index of the underlying power-law distribution of electron energies, as determined by the behavior of the afterglow in different spectral/temporal regimes. At 11 rest-frame hours after trigger, we find a roughly even split between ISM-like and wind-like environments. We further find a 2$sigma$ separation in the prompt emission energy distributions of wind-like and ISM-like bursts. We investigate the underlying physical parameters of the shock, and calculate the (degenerate) product of density and magnetic field energy ($epsilon_B$). We show that $epsilon_B$ must be $ll 10^{-2}$ to avoid implied densities comparable to the intergalactic medium. Finally, we find that the most precisely constrained observations disagree on $p$ by more than would be expected based on observational errors alone. This suggests additional sources of error that are not incorporated in the standard afterglow theory. For the first time, we provide a measurement of this intrinsic error which can be represented as an error in the estimate of $p$ of magnitude $0.25 pm 0.04$. When this error is included in the fits, the number of LGRBs with an identified environment drops substantially, but the equal division between the two types remains.
We study the time-resolved spectra of eight GRBs observed by Fermi GBM in its first five years of mission, with 1 keV - 1 MeV fluence $f>1.0times10^{-4}$ erg cm$^{-2}$ and signal-to-noise level $text{S/N}geq10.0$ above 900 keV. We aim to constrain in
We present broadband (radio, optical, and X-ray) light curves and spectra of the afterglows of four long-duration gamma-ray bursts (GRBs 090323, 090328, 090902B, and 090926A) detected by the Gamma-Ray Burst Monitor (GBM) and Large Area Telescope (LAT
The high-energy universe has revealed that energetic particles are ubiquitous in the cosmos and play a vital role in the cultivation of cosmic environments on all scales. Though they play a key role in cultivating the cosmological environment and/or
Gamma-ray bursts (GRBs) are some of the most extreme events in the Universe. As well as providing a natural laboratory for investigating fundamental physical processes, they might trace the cosmic star formation rate up to extreme redshifts and probe
Gamma-ray bursts (GRBs) were first detected thanks to their prompt emission, which was the only information available for decades. In 2010, while the high-energy prompt emission remains the main tool for the detection and the first localization of GR