ترغب بنشر مسار تعليمي؟ اضغط هنا

First Cosmological Constraint on the Effective Theory of Dark Matter-Proton Interactions

63   0   0.0 ( 0 )
 نشر من قبل Vera Gluscevic
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We obtain the first cosmological constraints on interactions between dark matter and protons within the formalism of nonrelativistic effective field theory developed for direct detection. For each interaction operator in the effective theory, parametrized by different powers of the relative velocity of the incoming particles, we use the Planck 2015 cosmic microwave background (CMB) temperature, polarization, and lensing anisotropy to set upper limits on the scattering cross section for all dark matter masses above 15 keV. We find that for interactions associated with a stronger dependence on velocity, dark matter and baryons stay thermally coupled for longer, but the interaction strengths are suppressed at the low temperatures relevant for Planck observations and are thus less constrained. At the same time, cross sections with stronger velocity dependencies are more constrained in the limit of small dark matter mass. In all cases, the effect of dark matter-proton scattering is most prominent on small scales in the CMB power spectra and in the matter power spectrum, and we thus expect substantial improvement over the current limits with data from ground-based CMB experiments and galaxy surveys.



قيم البحث

اقرأ أيضاً

Dark matter interactions with electrons or protons during the early Universe leave imprints on the cosmic microwave background and the matter power spectrum, and can be probed through cosmological and astrophysical observations. We explore these inte ractions using a diverse suite of data: cosmic microwave background anisotropies, baryon acoustic oscillations, the Lyman-$alpha$ forest, and the abundance of Milky-Way subhalos. We derive constraints using model-independent parameterizations of the dark matter--electron and dark matter--proton interaction cross sections and map these constraints onto concrete dark matter models. Our constraints are complementary to other probes of dark matter interactions with ordinary matter, such as direct detection, big bang nucleosynthesis, various astrophysical systems, and accelerator-based experiments.
We study a two-parameter extension of the cosmological standard model $Lambda$CDM in which cold dark matter interacts with a new form of dark radiation. The two parameters correspond to the energy density in the dark radiation fluid $Delta N_mathrm{f luid}$ and the interaction strength between dark matter and dark radiation. The interactions give rise to a very weak dark matter drag which damps the growth of matter density perturbations throughout radiation domination, allowing to reconcile the tension between predictions of large scale structure from the CMB and direct measurements of $sigma_8$. We perform a precision fit to Planck CMB data, BAO, large scale structure, and direct measurements of the expansion rate of the universe today. Our model lowers the $chi$-squared relative to $Lambda$CDM by about 12, corresponding to a preference for non-zero dark matter drag by more than $3 sigma$. Particle physics models which naturally produce a dark matter drag of the required form include the recently proposed non-Abelian dark matter model in which the dark radiation corresponds to massless dark gluons.
The Large Underground Xenon (LUX) dark matter search was a 250-kg active mass dual-phase time projection chamber that operated by detecting light and ionization signals from particles incident on a xenon target. In December 2015, LUX reported a minim um 90% upper C.L. of 6e-46 cm^2 on the spin-independent WIMP-nucleon elastic scattering cross section based on a 1.4e4 kg*day exposure in its first science run. Tension between experiments and the absence of a definitive positive detection suggest it would be prudent to search for WIMPs outside the standard spin-independent/spin-dependent paradigm. Recent theoretical work has identified a complete basis of 14 independent effective field theory (EFT) operators to describe WIMP-nucleon interactions. In addition to spin-independent and spin-dependent nuclear responses, these operators can produce novel responses such as angular-momentum-dependent and spin-orbit couplings. Here we report on a search for all 14 of these EFT couplings with data from LUXs first science run. Limits are placed on each coupling as a function of WIMP mass.
We explore the model-independent constraints from cosmology on a dark-matter particle with no prominent standard model interactions that interacts and thermalizes with other particles in a hidden sector. Without specifying detailed hidden-sector part icle physics, we characterize the relevant physics by the annihilation cross section, mass, and temperature ratio of the hidden to visible sectors. While encompassing the standard cold WIMP scenario, we do not require the freeze-out process to be nonrelativistic. Rather, freeze-out may also occur when dark matter particles are semirelativistic or relativistic. We solve the Boltzmann equation to find the conditions that hidden-sector dark matter accounts for the observed dark-matter density, satisfies the Tremaine-Gunn bound on dark-matter phase space density, and has a free-streaming length consistent with cosmological constraints on the matter power spectrum. We show that for masses <1.5 keV no region of parameter space satisfies all these constraints. This is a gravitationally-mediated lower bound on the dark-matter mass for any model in which the primary component of dark matter once had efficient interactions -- even if it has never been in equilibrium with the standard model.
We revise the cosmological phenomenology of Macroscopic Dark Matter (MDM) candidates, also commonly dubbed as Macros. A possible signature of MDM is the capture of baryons from the cosmological plasma in the pre-recombination epoch, with the conseque nt injection of high-energy photons in the baryon-photon plasma. By keeping a phenomenological approach, we consider two broad classes of MDM in which Macros are composed either of ordinary matter or antimatter. In both scenarios, we also analyze the impact of a non-vanishing electric charge carried by Macros. We derive constraints on the Macro parameter space from three cosmological processes: the change in the baryon density between the end of the Big Bang Nucleosynthesis (BBN) and the Cosmic Microwave Background (CMB) decoupling, the production of spectral distortions in the CMB and the kinetic coupling between charged MDM and baryons at the time of recombination. In the case of neutral Macros we find that the tightest constraints are set by the baryon density condition in most of the parameter space. For Macros composed of ordinary matter and with binding energy $I$, this leads to the following bound on the reduced cross-section: $sigma_X/M_X lesssim 6.8 cdot 10^{-7} left(I/mathrm{MeV}right)^{-1.56} , text{cm}^2 , text{g}^{-1}$. Charged Macros with surface potential $V_X$, instead, are mainly constrained by the tight coupling with baryons, resulting in $sigma_X/M_X lesssim 2 cdot 10^{-11} left(|V_X|/mathrm{MeV}right)^{-2} text{cm}^2 , text{g}^{-1}$. Finally, we show that future CMB spectral distortions experiments, like PIXIE and SuperPIXIE, would have the sensitivity to probe larger regions of the parameter space: this would allow either for a possible evidence or for an improvement of the current bounds on Macros as dark matter candidates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا