ترغب بنشر مسار تعليمي؟ اضغط هنا

Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling

309   0   0.0 ( 0 )
 نشر من قبل Thomas A. Searles
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a classical analogue of electromagnetically induced transparency (EIT) in a highly flexible planar terahertz metamaterial (MM) comprised of three-gap split ring resonators. The keys to achieve EIT in this system are the frequency detuning and hybridization processes between two bright modes coexisting in the same unit cell as opposed to bright-dark modes. We present experimental verification of two-bright mode coupling for a terahertz EIT-MM in the context of numerical results and theoretical analysis based on a coupled Lorentz oscillator model. In addition, a hybrid variation of the EIT-MM is proposed and implemented numerically in order to dynamically tune the EIT window by incorporating photosensitive silicon pads in the split gap region of the resonators. As a result, this hybrid MM enables the potential active optical control of a transition from the on-state (EIT mode) to the off-state (dipole mode).



قيم البحث

اقرأ أيضاً

A frequency beam splitter (FBS) with the split ratio of 0.5 or 1 can be used as the frequency-mode Hadamard gate (FHG) for frequency-encoded photonic qubits or as the quantum frequency converter (QFC) for frequency up or down conversion of photons. P revious works revealed that all kinds of the FHG or QFC operating at the single-photon level had overall efficiency or output-to-input ratio around 50% or less. In this work, our FHG and QFC are made with the four-wave mixing process based on the dual-$Lambda$ electromagnetically induced transparency scheme. We achieved an overall efficiency of 90$pm$4% in the FGH and that of 84% in the QFC using coherent-state single photons, both of which are the best up-to-date records. To test the fidelity of the FBS, we propose a novel scheme of Hong-Ou-Mandel interference (HOMI) for quantum process tomography. The fidelity indicated by the HOMIs $g^{(2)}$ measurement of the FHG is 0.99$pm$0.01. Such low-loss high-fidelity FHG and QFC or FBS with the tunable split ratio can lead to useful operations or devices in long-distance quantum communication.
We demonstrate theoretically a parallelized C-NOT gate which allows to entangle a mesoscopic ensemble of atoms with a single control atom in a single step, with high fidelity and on a microsecond timescale. Our scheme relies on the strong and long-ra nged interaction between Rydberg atoms triggering Electromagnetically Induced Transparency (EIT). By this we can robustly implement a conditional transfer of all ensemble atoms among two logical states, depending on the state of the control atom. We outline a many body interferometer which allows a comparison of two many-body quantum states by performing a measurement of the control atom.
Recently, phase-change materials (PCMs) have drawn more attention due to the dynamically tunable optical properties. Here, we investigate the active control of electromagnetically induced transparency (EIT) analogue based on terahertz (THz) metamater ials integrated with vanadium oxide (VO2). Utilizing the insulator-to-metal transition of VO2, the amplitude of EIT peak can be actively modulated with a significant modulation depth. Meanwhile the group delay within the transparent window can also be dynamically tuned, achieving the active control of slow light effect. Furthermore, we also introduce independently tunable transparent peaks as well as group delay based on a double-peak EIT with good tuning performance. Finally, based on broadband EIT, the active tuning of quality factor of the EIT peak is also realized. This work introduces active EIT control with more degree of freedom by employing VO2, and can find potential applications in future wireless and ultrafast THz communication systems as multi-channel filters, switches, spacers, logic gates and modulators.
150 - T. Laupr^etre 2009
Electromagnetically induced transparency (EIT) is observed in a three-level system composed of an excited state and two coherent superpositions of the two ground-state levels. This peculiar ground state basis is composed of the so-called bright and d ark states of the same atomic system in a standard coherent population trapping configuration. The characteristics of EIT, namely, width of the transmission window and reduced group velocity of light, in this unusual basis, are theoretically and experimentally investigated and are shown to be essentially identical to those of standard EIT in the same system.
We report electromagnetically induced transparency for the D1 and D2 lines in $^{6}$Li in both a vapour cell and an atomic beam. Electromagnetically induced transparency is created using co-propagating mutually coherent laser beams with a frequency d ifference equal to the hyperfine ground state splitting of 228.2 MHz. The effects of various optical polarization configurations and applied magnetic fields are investigated. In addition, we apply an optical Ramsey spectroscopy technique which further reduces the observed resonance width.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا