ﻻ يوجد ملخص باللغة العربية
We performed SQUID and FMR magnetometry experiments to clarify the relationship between two reported magnetic exchange effects arising from interfacial spin-polarized charge transfer within ferromagnetic metal (FM)/molecule bilayers: the magnetic hardening effect, and spinterface-stabilized molecular spin chains. To disentangle these effects, both of which can affect the FM magnetization reversal, we tuned the metal phthalocyanine molecule central sites magnetic moment to selectively enhance or suppress the formation of spin chains within the molecular film. We find that both effects are distinct, and additive. In the process, we 1) extended the list of FM/molecule candidate pairs that are known to generate magnetic exchange effects, 2) experimentally confirmed the predicted increase in anisotropy upon molecular adsorption; and 3) showed that spin chains within the molecular film can enhance magnetic exchange. This magnetic ordering within the organic layer implies a structural ordering. Thus, by distengangling the magnetic hardening and exchange bias contributions, our results confirm, as an echo to progress regarding inorganic spintronic tunnelling, that the milestone of spintronic tunnelling across structurally ordered organic barriers has been reached through previous magnetotransport experiments. This paves the way for solid-state devices studies that exploit the quantum physical properties of spin chains, notably through external stimuli.
For ferromagnet/antiferromagnet bilayers, rotation of the easy axis has been textit{for the first time} observed during measurements of training effect and the recovery of exchange bias using FeNi/FeMn system. These salient phenomena strongly suggest
Thin highly epitaxial BiFeO$_3$ films were prepared on SrTiO$_3$ (100) substrates by reactive magnetron co-sputtering. Detailed MOKE measurements on BiFeO$_3$/Co-Fe bilayers were performed to investigate the exchange bias as a function of the films t
In conventional exchange-bias system comprising of a bilayer film of ferromagnet (FM) and antiferromagnet (AFM), investigating the role of spin-disorder and spin-frustration inside the AFM and at the interface has been crucial in understanding the fu
Spin pumping by ferromagnetic resonance is one of the most common technique to determine spin hall angles, Edelstein lengths or spin diffusion lengths of a large variety of materials. In recent years, rising concerns have appeared regarding the inter
We report the magnetic and dielectric behavior of Pb6Ni9(TeO6)5, a new compound comprising the honeycomb-like layers of S=1 spins, through detailed structural, magnetic and dielectric investigation. An antiferromagnetic-type transition at 25 K (TN) w