ترغب بنشر مسار تعليمي؟ اضغط هنا

Complex network analysis of brain functional connectivity under a multi-step cognitive task

381   0   0.0 ( 0 )
 نشر من قبل Shimin Cai Dr
 تاريخ النشر 2017
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Functional brain network has been widely studied to understand the relationship between brain organization and behavior. In this paper, we aim to explore the functional connectivity of brain network under a emph{multi-step} cognitive task involving with consecutive behaviors, and further understand the effect of behaviors on the brain organization. The functional brain networks are constructed base on a high spatial and temporal resolution fMRI dataset and analyzed via complex network based approach. We find that at voxel level the functional brain network shows robust small-worldness and scale-free characteristics, while its assortativity and rich-club organization are slightly restricted to order of behaviors performed. More interestingly, the functional connectivity of brain network in activated ROIs strongly correlates with behaviors and behaves obvious differences restricted to order of behaviors performed. These empirical results suggest that the brain organization has the generic properties of small-worldness and scale-free characteristics, and its diverse function connectivity emerging from activated ROIs is strongly driven by these behavioral activities via the plasticity of brain.



قيم البحث

اقرأ أيضاً

The human brain is a complex dynamical system that gives rise to cognition through spatiotemporal patterns of coherent and incoherent activity between brain regions. As different regions dynamically interact to perform cognitive tasks, variable patte rns of partial synchrony can be observed, forming chimera states. We propose that the emergence of such states plays a fundamental role in the cognitive organization of the brain, and present a novel cognitively-informed, chimera-based framework to explore how large-scale brain architecture affects brain dynamics and function. Using personalized brain network models, we systematically study how regional brain stimulation produces different patterns of synchronization across predefined cognitive systems. We then analyze these emergent patterns within our novel framework to understand the impact of subject-specific and region-specific structural variability on brain dynamics. Our results suggest a classification of cognitive systems into four groups with differing levels of subject and regional variability that reflect their different functional roles.
By focusing on melancholic features with biological homogeneity, this study aimed to identify a small number of critical functional connections (FCs) that were specific only to the melancholic type of MDD. On the resting-state fMRI data, classifiers were developed to differentiate MDD patients from healthy controls (HCs). The classification accuracy was improved from 50 % (93 MDD and 93 HCs) to 70% (66 melancholic MDD and 66 HCs), when we specifically focused on the melancholic MDD with moderate or severer level of depressive symptoms. It showed 65% accuracy for the independent validation cohort. The biomarker score distribution showed improvements with escitalopram treatments, and also showed significant correlations with depression symptom scores. This classifier was specific to melancholic MDD, and it did not generalize in other mental disorders including autism spectrum disorder (ASD, 54% accuracy) and schizophrenia spectrum disorder (SSD, 45% accuracy). Among the identified 12 FCs from 9,316 FCs between whole brain anatomical node pairs, the left DLPFC / IFG region, which has most commonly been targeted for depression treatments, and its functional connections between Precuneus / PCC, and between right DLPFC / SMA areas had the highest contributions. Given the heterogeneity of the MDD, focusing on the melancholic features is the key to achieve high classification accuracy. The identified FCs specifically predicted the melancholic MDD and associated with subjective depressive symptoms. These results suggested key FCs of melancholic depression, and open doors to novel treatments targeting these regions in the future.
Reconstructing network connectivity from the collective dynamics of a system typically requires access to its complete continuous-time evolution although these are often experimentally inaccessible. Here we propose a theory for revealing physical con nectivity of networked systems only from the event time series their intrinsic collective dynamics generate. Representing the patterns of event timings in an event space spanned by inter-event and cross-event intervals, we reveal which other units directly influence the inter-event times of any given unit. For illustration, we linearize an event space mapping constructed from the spiking patterns in model neural circuits to reveal the presence or absence of synapses between any pair of neurons as well as whether the coupling acts in an inhibiting or activating (excitatory) manner. The proposed model-independent reconstruction theory is scalable to larger networks and may thus play an important role in the reconstruction of networks from biology to social science and engineering.
Brain plasticity refers to brains ability to change neuronal connections, as a result of environmental stimuli, new experiences, or damage. In this work, we study the effects of the synaptic delay on both the coupling strengths and synchronisation in a neuronal network with synaptic plasticity. We build a network of Hodgkin-Huxley neurons, where the plasticity is given by the Hebbian rules. We verify that without time delay the excitatory synapses became stronger from the high frequency to low frequency neurons and the inhibitory synapses increases in the opposite way, when the delay is increased the network presents a non-trivial topology. Regarding the synchronisation, only for small values of the synaptic delay this phenomenon is observed.
79 - Ze Wang 2021
A large body of literature has shown the substantial inter-regional functional connectivity in the mammal brain. One important property remaining un-studied is the cross-time interareal connection. This paper serves to provide a tool to characterize the cross-time functional connectivity. The method is extended from the temporal embedding based brain temporal coherence analysis. Both synthetic data and in-vivo data were used to evaluate the various properties of the cross-time functional connectivity matrix, which is also called the cross-regional temporal coherence matrix.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا