ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark neutrino interactions make gravitational waves blue

343   0   0.0 ( 0 )
 نشر من قبل Subhajit Ghosh
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

New interactions of neutrinos can stop them from free streaming in the early Universe even after the weak decoupling epoch. This results in the enhancement of the primordial gravitational wave amplitude on small scales compared to the standard $Lambda$CDM prediction. In this paper we calculate the effect of dark matter neutrino interactions in CMB tensor $B$-modes spectrum. We show that the effect of new neutrino interactions generates a scale or $ell$ dependent imprint in the CMB $B$-modes power spectrum at $ell gtrsim 100$. In the event that primordial $B$-modes are detected by future experiments, a departure from scale invariance, with a blue spectrum, may not necessarily mean failure of simple inflationary models but instead may be a sign of non-standard interactions of relativistic particles. New interactions of neutrinos also induce a phase shift in the CMB B-mode power spectrum which cannot be mimicked by simple modifications of the primordial tensor power spectrum. There is rich information hidden in the CMB $B$-modes spectrum beyond just the tensor to scalar ratio.



قيم البحث

اقرأ أيضاً

Astrophysical neutrinos travel long distances from their sources to the Earth traversing dark matter halos of clusters of galaxies and that of our own Milky Way. The interaction of neutrinos with dark matter may affect the flux of neutrinos. The rece nt multi-messenger observation of a high energy neutrino, IceCube-170922A, can give a robust upper bound $sigma /M_{dm} lesssim 5.1times 10^{-23} {rm cm}^2 /$GeV on the interaction between neutrino and dark matter at a neutrino energy of 290 TeV allowing 90% suppression. Combining the constraints from CMB and LSS at different neutrino energies, we can constrain models of dark matter-neutrino interactions.
We show that the nonperturbative decay of ultralight scalars into Abelian gauge bosons, recently proposed as a possible solution to the Hubble tension, produces a stochastic background of gravitational waves which is constrained by the cosmic microwa ve background. We simulate the full nonlinear dynamics of resonant dark photon production and the associated gravitational wave production, finding the signals to exceed constraints for the entire parameter space we consider. Our findings suggest that gravitational wave production from the decay of early dark energy may provide a unique probe of these models.
The impact of dark matter-neutrino interactions on the measurement of the cosmological parameters has been investigated in the past in the context of massless neutrinos exclusively. Here we revisit the role of a neutrino-dark matter coupling in light of ongoing cosmological tensions by implementing the full Boltzmann hierarchy for three massive neutrinos. Our tightest 95% CL upper limit on the strength of the interactions, parameterized via $u_chi =frac{sigma_0}{sigma_{Th}}left(frac{m_chi}{100 text{GeV}}right)^{-1}$, is $u_chileq3.34 cdot 10^{-4}$, arising from a combination of Planck TTTEEE data, Planck lensing data and SDSS BAO data. This upper bound is, as expected, slightly higher than previous results for interacting massless neutrinos, due to the correction factor associated with neutrino masses. We find that these interactions significantly relax the lower bounds on the value of $sigma_8$ that is inferred in the context of $Lambda$CDM from the Planck data, leading to agreement within 1-2$sigma$ with weak lensing estimates of $sigma_8$, as those from KiDS-1000. However, the presence of these interactions barely affects the value of the Hubble constant $H_0$.
The absolute neutrino mass scale is currently unknown, but can be constrained from cosmology. The WiggleZ high redshift star-forming blue galaxy sample is less sensitive to systematics from non-linear structure formation, redshift-space distortions a nd galaxy bias than previous surveys. We obtain a upper limit on the sum of neutrino masses of 0.60eV (95% confidence) for WiggleZ+Wilkinson Microwave Anisotropy Probe. Combining with priors on the Hubble Parameter and the baryon acoustic oscillation scale gives an upper limit of 0.29eV, which is the strongest neutrino mass constraint derived from spectroscopic galaxy redshift surveys.
We explore the possible spectrum of binary mergers of sub-solar mass black holes formed out of dark matter particles interacting via a dark electromagnetism. We estimate the properties of these dark black holes by assuming that their formation proces s is parallel to Population-III star formation; except that dark molecular cooling can yield smaller opacity limit. We estimate the binary coalescence rates for the Advanced LIGO and Einstein telescope, and find that scenarios compatible with all current constraints could produce dark black holes at rates high enough for detection by Advanced LIGO.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا