AUPCR Maximizing Matchings : Towards a Pragmatic Notion of Optimality for One-Sided Preference Matchings


الملخص بالإنكليزية

We consider the problem of computing a matching in a bipartite graph in the presence of one-sided preferences. There are several well studied notions of optimality which include pareto optimality, rank maximality, fairness and popularity. In this paper, we conduct an in-depth experimental study comparing different notions of optimality based on a variety of metrics like cardinality, number of rank-1 edges, popularity, to name a few. Observing certain shortcomings in the standard notions of optimality, we propose an algorithm which maximizes an alternative metric called the Area under Profile Curve ratio (AUPCR). To the best of our knowledge, the AUPCR metric was used earlier but there is no known algorithm to compute an AUPCR maximizing matching. Finally, we illustrate the superiority of the AUPCR-maximizing matching by comparing its performance against other optimal matchings on synthetic instances modeling real-world data.

تحميل البحث