ﻻ يوجد ملخص باللغة العربية
We provide a Mathematica package, DirectDM, that takes as input the Wilson coefficients of the relativistic effective theory describing the interactions of dark matter with quarks, gluons and photons, and matches it onto an effective theory describing the interactions of dark matter with neutrons and protons. The nonperturbative matching is performed at leading order in a chiral expansion. The one-loop QCD and QED renormalization-group evolution from the electroweak scale down to the hadronic scale, as well as finite corrections at the heavy quark thresholds are taken into account. We also provide an interface with the package DMFormFactor so that, starting from the relativistic effective theory, one can directly obtain the event rates for direct detection experiments.
In this work we introduce RAPIDD, a surrogate model that speeds up the computation of the expected spectrum of dark matter particles in direct detection experiments. RAPIDD replaces the exact calculation of the dark matter differential rate (which in
Dark matter could emerge along with the Higgs as a composite pseudo-Nambu-Goldstone boson $chi$ with decay constant $fsim mathrm{TeV}$. This type of WIMP is especially compelling because its leading interaction with the Standard Model, the derivative
Traditional direct searches for dark matter, looking for nuclear recoils in deep underground detectors, are challenged by an almost complete loss of sensitivity for light dark matter particles. Consequently, there is a significant effort in the commu
We study the capabilities of the MAJORANA DEMONSTRATOR, a neutrinoless double-beta decay experiment currently under construction at the Sanford Underground Laboratory, as a light WIMP detector. For a cross section near the current experimental bound,
Identifying the true theory of dark matter depends crucially on accurately characterizing interactions of dark matter (DM) with other species. In the context of DM direct detection, we present a study of the prospects for correctly identifying the lo