Diagonal sum of infinite image partition regular matrices


الملخص بالإنكليزية

A finite or infinite matrix $A$ is image partition regular provided that whenever $mathbb N$ is finitely colored, there must be some $vec{x}$ with entries from $mathbb N$ such that all entries of $Avec{x}$ are in some color class. In [6], it was proved that the diagonal sum of a finite and an infinite image partition regular matrix is also image partition regular. It was also shown there that centrally image partition regular matrices are closed under diagonal sum. Using Theorem 3.3 of [2], one can conclude that diagonal sum of two infinite image partition regular matrices may not be image partition regular. In this paper we shall study the image partition regularity of diagonal sum of some infinite image partition regular matrices. In many cases it will produce more infinite image partition regular matrices.

تحميل البحث