ﻻ يوجد ملخص باللغة العربية
We have extended Cosmos++, a multi-dimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for regularization of shocks. High order multi-stage forward Euler and strong stability preserving Runge-Kutta time integration options complement high order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performed separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, though we note an equivalent capability currently also exists in CosmosDG for Newtonian systems.
A considerable amount of attention has been given to discontinuous Galerkin methods for hyperbolic problems in numerical relativity, showing potential advantages of the methods in dealing with hydrodynamical shocks and other discontinuities. This pap
In astrophysics, the two main methods traditionally in use for solving the Euler equations of ideal fluid dynamics are smoothed particle hydrodynamics and finite volume discretization on a stationary mesh. However, the goal to efficiently make use of
We study a class of nonlinear eigenvalue problems of Scrodinger type, where the potential is singular on a set of points. Such problems are widely present in physics and chemistry, and their analysis is of both theoretical and practical interest. In
Finite element simulations have been used to solve various partial differential equations (PDEs) that model physical, chemical, and biological phenomena. The resulting discretized solutions to PDEs often do not satisfy requisite physical properties,
The radiative transfer equation models the interaction of radiation with scattering and absorbing media and has important applications in various fields in science and engineering. It is an integro-differential equation involving time, space and angu