ترغب بنشر مسار تعليمي؟ اضغط هنا

CUORE Sensitivity to $0 ubetabeta$ Decay

139   0   0.0 ( 0 )
 نشر من قبل Giovanni Benato
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a study of the CUORE sensitivity to neutrinoless double beta ($0 ubetabeta$) decay. We used a Bayesian analysis based on a toy Monte Carlo (MC) approach to extract the exclusion sensitivity to the $0 ubetabeta$ decay half-life ($T_{1/2}^{0 u}$) at $90%$ credibility interval (CI) -- i.e. the interval containing the true value of $T_{1/2}^{0 u}$ with $90%$ probability -- and the $3 sigma$ discovery sensitivity. We consider various background levels and energy resolutions, and describe the influence of the data division in subsets with different background levels. If the background level and the energy resolution meet the expectation, CUORE will reach a $90%$ CI exclusion sensitivity of $2cdot10^{25}$ yr with $3$ months, and $9cdot10^{25}$ yr with $5$ years of live time. Under the same conditions, the discovery sensitivity after $3$ months and $5$ years will be $7cdot10^{24}$ yr and $4cdot10^{25}$ yr, respectively.



قيم البحث

اقرأ أيضاً

68 - G. Benato , D. Biare , C. Bucci 2017
CUORE - the Cryogenic Underground Observatory for Rare Events - is an experiment searching for the neutrinoless double-beta ($0 ubetabeta$) decay of $^{130}$Te with an array of 988 TeO$_2$ crystals operated as bolometers at $sim$10 mK in a large dilu tion refrigerator. With this detector, we aim for a $^{130}$Te $0 ubetabeta$ decay half-life sensitivity of $9times10^{25}$ y with 5 y of live time, and a background index of $lesssim 10^{-2}$ counts/keV/kg/y. Making an effort to maintain radiopurity by minimizing the bolometers exposure to radon gas during their installation in the cryostat, we perform all operations inside a dedicated cleanroom environment with a controlled radon-reduced atmosphere. In this paper, we discuss the design and performance of the CUORE Radon Abatement System and cleanroom, as well as a system to monitor the radon level in real time.
117 - Neha Dokania , V. Singh , C. Ghosh 2015
Radiation background studies pertaining to $0 ubetabeta$ decay in $^{124}$Sn have been carried out. A TiLES setup has been installed at TIFR for this purpose. Neutron-induced background is studied in the TIN.TIN detector materials using fast neutron activation technique. The neutron flux ($E_nleq15$ MeV) resulting from SF and ($alpha, n$) interactions for the rock in the INO cavern is estimated using MC simulations. A two layer composite shield of borated paraffin (20 cm) + Pb (5 cm) is proposed for the reduction of neutron flux.
The CUORE experiment will search for neutrinoless double-beta decay of $^{130}$Te with an array of 988 TeO$_2$ bolometers arranged in 19 towers. CUORE-0, the first tower assembled according to the CUORE procedures, was built and commissioned at Labor atori Nazionali del Gran Sasso, and took data from March 2013 to March 2015. In this paper we describe the design, construction and operation of the CUORE-0 experiment, with an emphasis on the improvements made over a predecessor experiment, Cuoricino. In particular, we demonstrate with CUORE-0 data that the design goals of CUORE are within reach.
A pulse-shape discrimination method based on artificial neural networks was applied to pulses simulated for different background, signal and signal-like interactions inside a germanium detector. The simulated pulses were used to investigate variation s of efficiencies as a function of used training set. It is verified that neural networks are well-suited to identify background pulses in true-coaxial high-purity germanium detectors. The systematic uncertainty on the signal recognition efficiency derived using signal-like evaluation samples from calibration measurements is estimated to be 5%. This uncertainty is due to differences between signal and calibration samples.
CUORE is a 741 kg array of TeO2 bolometers for the search of neutrinoless double beta decay of 130Te. The detector is being constructed at the Laboratori Nazionali del Gran Sasso, Italy, where it will start taking data in 2015. If the target backgrou nd of 0.01 counts/keV/kg/y will be reached, in five years of data taking CUORE will have a 1 sigma half life sensitivity of 10E26 y. CUORE-0 is a smaller experiment constructed to test and demonstrate the performances expected for CUORE. The detector is a single tower of 52 CUORE-like bolometers that started taking data in spring 2013. The status and perspectives of CUORE will be discussed, and the first CUORE-0 data will be presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا