ﻻ يوجد ملخص باللغة العربية
Computational cognitive modeling investigates human cognition by building detailed computational models for cognitive processes. Adaptive Control of Thought - Rational (ACT-R) is a rule-based cognitive architecture that offers a widely employed framework to build such models. There is a sound and complete embedding of ACT-R in Constraint Handling Rules (CHR). Therefore analysis techniques from CHR can be used to reason about computational properties of ACT-R models. For example, confluence is the property that a program yields the same result for the same input regardless of the rules that are applied. In ACT-R models, there are often cognitive processes that should always yield the same result while others e.g. implement strategies to solve a problem that could yield different results. In this paper, a decidable confluence criterion for ACT-R is presented. It allows to identify ACT-R rules that are not confluent. Thereby, the modeler can check if his model has the desired behavior. The sound and complete translation of ACT-R to CHR from prior work is used to come up with a suitable invariant-based confluence criterion from the CHR literature. Proper invariants for translated ACT-R models are identified and proven to be decidable. The presented method coincides with confluence of the original ACT-R models.
Computational psychology has the aim to explain human cognition by computational models of cognitive processes. The cognitive architecture ACT-R is popular to develop such models. Although ACT-R has a well-defined psychological theory and has been us
In language learning in the limit, the most common type of hypothesis is to give an enumerator for a language. This so-called $W$-index allows for naming arbitrary computably enumerable languages, with the drawback that even the membership problem is
Confluence denotes the property of a state transition system that states can be rewritten in more than one way yielding the same result. Although it is a desirable property, confluence is often too strict in practical applications because it also con
Orthogonality is a discipline of programming that in a syntactic manner guarantees determinism of functional specifications. Essentially, orthogonality avoids, on the one side, the inherent ambiguity of non determinism, prohibiting the existence of d
We present initial limit Datalog, a new extensible class of constrained Horn clauses for which the satisfiability problem is decidable. The class may be viewed as a generalisation to higher-order logic (with a simple restriction on types) of the firs