ترغب بنشر مسار تعليمي؟ اضغط هنا

Image Segmentation by Iterative Inference from Conditional Score Estimation

356   0   0.0 ( 0 )
 نشر من قبل Adriana Romero
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Inspired by the combination of feedforward and iterative computations in the virtual cortex, and taking advantage of the ability of denoising autoencoders to estimate the score of a joint distribution, we propose a novel approach to iterative inference for capturing and exploiting the complex joint distribution of output variables conditioned on some input variables. This approach is applied to image pixel-wise segmentation, with the estimated conditional score used to perform gradient ascent towards a mode of the estimated conditional distribution. This extends previous work on score estimation by denoising autoencoders to the case of a conditional distribution, with a novel use of a corrupted feedforward predictor replacing Gaussian corruption. An advantage of this approach over more classical ways to perform iterative inference for structured outputs, like conditional random fields (CRFs), is that it is not any more necessary to define an explicit energy function linking the output variables. To keep computations tractable, such energy function parametrizations are typically fairly constrained, involving only a few neighbors of each of the output variables in each clique. We experimentally find that the proposed iterative inference from conditional score estimation by conditional denoising autoencoders performs better than comparable models based on CRFs or those not using any explicit modeling of the conditional joint distribution of outputs.



قيم البحث

اقرأ أيضاً

Learning segmentation from noisy labels is an important task for medical image analysis due to the difficulty in acquiring highquality annotations. Most existing methods neglect the pixel correlation and structural prior in segmentation, often produc ing noisy predictions around object boundaries. To address this, we adopt a superpixel representation and develop a robust iterative learning strategy that combines noise-aware training of segmentation network and noisy label refinement, both guided by the superpixels. This design enables us to exploit the structural constraints in segmentation labels and effectively mitigate the impact of label noise in learning. Experiments on two benchmarks show that our method outperforms recent state-of-the-art approaches, and achieves superior robustness in a wide range of label noises. Code is available at https://github.com/gaozhitong/SP_guided_Noisy_Label_Seg.
Image segmentation is one of the most fundamental tasks of computer vision. In many practical applications, it is essential to properly evaluate the reliability of individual segmentation results. In this study, we propose a novel framework to provid e the statistical significance of segmentation results in the form of p-values. Specifically, we consider a statistical hypothesis test for determining the difference between the object and the background regions. This problem is challenging because the difference can be deceptively large (called segmentation bias) due to the adaptation of the segmentation algorithm to the data. To overcome this difficulty, we introduce a statistical approach called selective inference, and develop a framework to compute valid p-values in which the segmentation bias is properly accounted for. Although the proposed framework is potentially applicable to various segmentation algorithms, we focus in this paper on graph cut-based and threshold-based segmentation algorithms, and develop two specific methods to compute valid p-values for the segmentation results obtained by these algorithms. We prove the theoretical validity of these two methods and demonstrate their practicality by applying them to segmentation problems for medical images.
The Dice score and Jaccard index are commonly used metrics for the evaluation of segmentation tasks in medical imaging. Convolutional neural networks trained for image segmentation tasks are usually optimized for (weighted) cross-entropy. This introd uces an adverse discrepancy between the learning optimization objective (the loss) and the end target metric. Recent works in computer vision have proposed soft surrogates to alleviate this discrepancy and directly optimize the desired metric, either through relaxations (soft-Dice, soft-Jaccard) or submodular optimization (Lovasz-softmax). The aim of this study is two-fold. First, we investigate the theoretical differences in a risk minimization framework and question the existence of a weighted cross-entropy loss with weights theoretically optimized to surrogate Dice or Jaccard. Second, we empirically investigate the behavior of the aforementioned loss functions w.r.t. evaluation with Dice score and Jaccard index on five medical segmentation tasks. Through the application of relative approximation bounds, we show that all surrogates are equivalent up to a multiplicative factor, and that no optimal weighting of cross-entropy exists to approximate Dice or Jaccard measures. We validate these findings empirically and show that, while it is important to opt for one of the target metric surrogates rather than a cross-entropy-based loss, the choice of the surrogate does not make a statistical difference on a wide range of medical segmentation tasks.
Recently, realistic image generation using deep neural networks has become a hot topic in machine learning and computer vision. Images can be generated at the pixel level by learning from a large collection of images. Learning to generate colorful ca rtoon images from black-and-white sketches is not only an interesting research problem, but also a potential application in digital entertainment. In this paper, we investigate the sketch-to-image synthesis problem by using conditional generative adversarial networks (cGAN). We propose the auto-painter model which can automatically generate compatible colors for a sketch. The new model is not only capable of painting hand-draw sketch with proper colors, but also allowing users to indicate preferred colors. Experimental results on two sketch datasets show that the auto-painter performs better that existing image-to-image methods.
Classical pairwise image registration methods search for a spatial transformation that optimises a numerical measure that indicates how well a pair of moving and fixed images are aligned. Current learning-based registration methods have adopted the s ame paradigm and typically predict, for any new input image pair, dense correspondences in the form of a dense displacement field or parameters of a spatial transformation model. However, in many applications of registration, the spatial transformation itself is only required to propagate points or regions of interest (ROIs). In such cases, detailed pixel- or voxel-level correspondence within or outside of these ROIs often have little clinical value. In this paper, we propose an alternative paradigm in which the location of corresponding image-specific ROIs, defined in one image, within another image is learnt. This results in replacing image registration by a conditional segmentation algorithm, which can build on typical image segmentation networks and their widely-adopted training strategies. Using the registration of 3D MRI and ultrasound images of the prostate as an example to demonstrate this new approach, we report a median target registration error (TRE) of 2.1 mm between the ground-truth ROIs defined on intraoperative ultrasound images and those propagated from the preoperative MR images. Significantly lower (>34%) TREs were obtained using the proposed conditional segmentation compared with those obtained from a previously-proposed spatial-transformation-predicting registration network trained with the same multiple ROI labels for individual image pairs. We conclude this work by using a quantitative bias-variance analysis to provide one explanation of the observed improvement in registration accuracy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا