ترغب بنشر مسار تعليمي؟ اضغط هنا

ALMA polarization observations of the particle accelerators in the hot spot of the radio galaxy 3C 445

146   0   0.0 ( 0 )
 نشر من قبل Monica Orienti
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Atacama Large Millimeter Array (ALMA) polarization observations at 97.5 GHz of the southern hot spot of the radio galaxy 3C 445. The hot spot structure is dominated by two bright components enshrouded by diffuse emission. Both components show fractional polarization between 30 and 40 per cent, suggesting the presence of shocks. The polarized emission of the western component has a displacement of about 0.5 kpc outward with respect to the total intensity emission, and may trace the surface of a front shock. Strong polarization is observed in a thin strip marking the ridge of the hot spot structure visible from radio to optical. No significant polarization is detected in the diffuse emission between the main components, suggesting a highly disordered magnetic field likely produced by turbulence and instabilities in the downstream region that may be at the origin of the extended optical emission observed in this hot spot. The polarization properties support a scenario in which a combination of both multiple and intermittent shock fronts due to jet dithering, and spatially distributed stochastic second-order Fermi acceleration processes are present in the hot spot complex.



قيم البحث

اقرأ أيضاً

125 - M. Orienti 2020
We report results on deep Jansky Very Large Array A-configuration observations at 22 GHz of the hotspots of the radio galaxies 3C227 and 3C445. Synchrotron emission in the optical on scales up to a few kpc was reported for the four hotspots. Our VLA observations point out the presence of unresolved regions with upper limit to their linear size of about 100 pc. This is the first time that such compact components in hotspots have been detected in a mini-sample, indicating that they are not a peculiar characteristic of a few individual hotspots. The polarization may reach values up to 70 per cent in compact (about 0.1 kpc scale) regions within the hotspot, indicating a highly ordered magnetic field with size up to a hundred parsecs. On larger scales, the average polarization of the hotspot component is about 30-45 per cent, suggesting the presence of a significant random field component, rather than an ordered magnetic field. This is further supported by the displacement between the peaks in polarized intensity and in total intensity images that is observed in all the four hotspots. The electric vector position angle is not constant, but changes arbitrarily in the central part of the hotspot regions, whereas it is usually perpendicular to the total intensity contours of the outermost edge of the hotspot structure, likely marking the large-scale shock front. The misalignment between X-ray and radio-to-optical emission suggests that the former is tracing the current particle acceleration, whereas the latter marks older shock fronts.
247 - R. M. Sambruna 2007
We present the results of the analysis of an archival 15 ks XMM-Newton observation of the nearby (z=0.057) radio-loud source 3C445, optically classified as a Broad-Line Radio Galaxy. While the RGS data are of insufficient quality to allow a meaningfu l analysis, the EPIC data show a remarkable X-ray spectrum. The 2-10 keV continuum is described by a heavily absorbed (Nh~ 1e22 - 1e23 cm-2) power law with photon index Gamma ~1.4, and strong (R~2) cold reflection. A narrow, unresolved Fe Kalpha emission line is detected, confirming previous findings, with EW 120eV. A soft excess is present below 2 keV over the extrapolation of the hard X-ray power law, which we model with a power law with the same photon index as the hard power law, absorbed by a column density Nh=6e20 cm-2 in excess to Galactic. A host of emission lines are present below 2 keV, confirming previous indications from ASCA, due to H- and He-like O, Mg, and Si. We attribute the origin of the lines to a photoionized gas, with properties very similar to radio-quiet obscured AGN. Two different ionized media, or a single stratified medium, are required to fit the soft X-ray data satisfactorily. The similarity of the X-ray spectrum of 3C445 to Seyferts underscores that the central engines of radio-loud and radio-quiet AGN similarly host both cold and warm gas.
We report the results of monitoring of the radio galaxy 3C 120 with the Neil Gehrels Swift Observatory, Very Long Baseline Array, and Metsahovi Radio Observatory. The UV-optical continuum spectrum and R-band polarization can be explained by a superpo sition of an inverted-spectrum source with a synchrotron component containing a disordered magnetic field. The UV-optical and X-ray light curves include dips and flares, while several superluminal knots appear in the parsec-scale jet. The recovery time of the second dip was longer at UV-optical wavelengths, in conflict with a model in which the inner accretion disk (AD) is disrupted during a dip and then refilled from outer to inner radii. We favor an alternative scenario in which occasional polar alignments of the magnetic field in the disk and corona cause the flux dips and formation of shocks in the jet. Similar to observations of Seyfert galaxies, intra-band time lags of flux variations are longer than predicted by the standard AD model. This suggests that scattering or some other reprocessing occurs. The 37 GHz light curve is well correlated with the optical-UV variations, with a ~20-day delay. A radio flare in the jet occurred in a superluminal knot 0.14 milliarcseconds downstream of the 43 GHz core, which places the site of the preceding X-ray/UV/optical flare within the core 0.5-1.3 pc from the black hole. The inverted UV-optical flare spectrum can be explained by a nearly mono-energetic electron distribution with energy similar to the minimum energy inferred in the TeV gamma-ray emitting regions of some BL Lacertae objects.
123 - Daniel A. Evans 2009
We present results from a new 100-ks Suzaku observation of the nearby radio galaxy 3C 33, and investigate the nature of absorption, reflection, and jet production in this source. We model the 2-70 keV nuclear continuum with a power law that is absorb ed either through one or more layers of pc-scale neutral material, or through a modestly ionized pc-scale obscurer. The expected signatures of reflection from a neutral accretion disk are absent in 3C 33: there is no evidence of a relativistically blurred Fe K$alpha$ emission line, and no Compton reflection hump above 10 keV. We discuss the implications of this for the nature of jet production in 3C 33.
Here we present the results of a Suzaku observation of the Broad Line Radio Galaxy 3C 445. We confirm the results obtained with the previous X-ray observations which unveiled the presence of several soft X-ray emission lines and an overall X-ray emis sion which strongly resembles a typical Seyfert 2 despite of the optical classification as an unobscured AGN. The broad band spectrum allowed us to measure for the first time the amount of reflection (R~0.9) which together with the relatively strong neutral Fe Kalpha emission line (EW ~ 100 eV) strongly supports a scenario where a Compton-thick mirror is present. The primary X-ray continuum is strongly obscured by an absorber with a column density of NH =2-3 x10^{23} cm^{-2}. Two possible scenarios are proposed for the absorber: a neutral partial covering or a mildly ionised absorber with an ionisation parameter logxi ~ 1.0 erg cm s^{-1}. A comparison with the past and more recent X-ray observations of 3C 445 performed with XMM-Newton and Chandra is presented, which provided tentative evidence that the ionised and outflowing absorber varied. We argue that the absorber is probably associated with an equatorial disk-wind located within the parsec scale molecular torus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا