ﻻ يوجد ملخص باللغة العربية
Intermediate mass black holes (IMBHs) with a mass between $10^{2}$ and $10^{5}$ times that of the sun, which bridges the {mass gap between the} stellar-mass black holes and the supermassive black holes, are crucial in understanding the evolution of the black holes. Although they are widely believed to exist, decisive evidence has long been absent. Motivated by the successful detection of massive stellar-mass black holes by advanced LIGO, through the gravitational wave radiation during the binary merger, in this work we investigate the prospect of detecting/identifying the lightest IMBHs (LIMBHs; the black holes $gtrsim 100M_odot$) with the second generation gravitational wave detectors. In general, the chance of hearing the birth of the LIMBHs is significantly higher than that to identify pre-merger IMBHs. The other formation channel of LIMBHs, where stars with huge mass/low-metallicity directly collapse, is likely silent, so the merger-driven birth of the LIMBHs may be the only observable scenario in the near future. Moreover, the prospect of establishing the presence of (lightest) intermediate mass black holes in the O3 run and beyond of advanced LIGO is found quite promising, implying that such an instrument could make another breakthrough on astronomy in the near future. The joining of other detectors like advanced Virgo would only increase the detection rate.
We study the formation of intermediate-mass ratio inspirals (IMRIs) triggered by the interactions between two stellar black holes (BHs) and an intermediate-mass BH (IMBH) inhabiting the centre of a dense star cluster. We exploit $N$-body models varyi
The next generation of gravitational-wave experiments, such as Einstein Telescope, Cosmic Explorer and LISA, will test the primordial black hole scenario. We provide a forecast for the minimum testable value of the abundance of primordial black holes
Gravitational waves from coalescences of neutron stars or stellar-mass black holes into intermediate-mass black holes (IMBHs) of $gtrsim 100$ solar masses represent one of the exciting possible sources for advanced gravitational-wave detectors. These
Black holes are unique among astrophysical sources: they are the simplest macroscopic objects in the Universe, and they are extraordinary in terms of their ability to convert energy into electromagnetic and gravitational radiation. Our capacity to pr
We calculate the gravitational wave signal from the growth of 10 million solar mass supermassive black holes (SMBH) from the remnants of Population III stars. The assembly of these lower mass black holes is particularly important because observing SM