ترغب بنشر مسار تعليمي؟ اضغط هنا

Dual polynomials and communication complexity of $textsf{XOR}$ functions

104   0   0.0 ( 0 )
 نشر من قبل Nikhil Mande
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We show a new duality between the polynomial margin complexity of $f$ and the discrepancy of the function $f circ textsf{XOR}$, called an $textsf{XOR}$ function. Using this duality, we develop polynomial based techniques for understanding the bounded error ($textsf{BPP}$) and the weakly-unbounded error ($textsf{PP}$) communication complexities of $textsf{XOR}$ functions. We show the following. A weak form of an interesting conjecture of Zhang and Shi (Quantum Information and Computation, 2009) (The full conjecture has just been reported to be independently settled by Hatami and Qian (Arxiv, 2017). However, their techniques are quite different and are not known to yield many of the results we obtain here). Zhang and Shi assert that for symmetric functions $f : {0, 1}^n rightarrow {-1, 1}$, the weakly unbounded-error complexity of $f circ textsf{XOR}$ is essentially characterized by the number of points $i$ in the set ${0,1, dots,n-2}$ for which $D_f(i) eq D_f(i+2)$, where $D_f$ is the predicate corresponding to $f$. The number of such points is called the odd-even degree of $f$. We show that the $textsf{PP}$ complexity of $f circ textsf{XOR}$ is $Omega(k/ log(n/k))$. We resolve a conjecture of a different Zhang characterizing the Threshold of Parity circuit size of symmetric functions in terms of their odd-even degree. We obtain a new proof of the exponential separation between $textsf{PP}^{cc}$ and $textsf{UPP}^{cc}$ via an $textsf{XOR}$ function. We provide a characterization of the approximate spectral norm of symmetric functions, affirming a conjecture of Ada et al. (APPROX-RANDOM, 2012) which has several consequences. Additionally, we prove strong $textsf{UPP}$ lower bounds for $f circ textsf{XOR}$, when $f$ is symmetric and periodic with period $O(n^{1/2-epsilon})$, for any constant $epsilon > 0$.



قيم البحث

اقرأ أيضاً

149 - Penghui Yao 2015
In this note, we study the relation between the parity decision tree complexity of a boolean function $f$, denoted by $mathrm{D}_{oplus}(f)$, and the $k$-party number-in-hand multiparty communication complexity of the XOR functions $F(x_1,ldots, x_k) = f(x_1opluscdotsoplus x_k)$, denoted by $mathrm{CC}^{(k)}(F)$. It is known that $mathrm{CC}^{(k)}(F)leq kcdotmathrm{D}_{oplus}(f)$ because the players can simulate the parity decision tree that computes $f$. In this note, we show that [mathrm{D}_{oplus}(f)leq Obig(mathrm{CC}^{(4)}(F)^5big).] Our main tool is a recent result from additive combinatorics due to Sanders. As $mathrm{CC}^{(k)}(F)$ is non-decreasing as $k$ grows, the parity decision tree complexity of $f$ and the communication complexity of the corresponding $k$-argument XOR functions are polynomially equivalent whenever $kgeq 4$. Remark: After the first version of this paper was finished, we discovered that Hatami and Lovett had already discovered the same result a few years ago, without writing it up.
The discrepancy method is widely used to find lower bounds for communication complexity of XOR games. It is well known that these bounds can be far from optimal. In this context Disjointness is usually mentioned as a case where the method fails to gi ve good bounds, because the increment of the value of the game is linear (rather than exponential) in the number of communicated bits. We show in this paper the existence of XOR games where the discrepancy method yields bounds as poor as one desires. Indeed, we show the existence of such games with any previously prescribed value. To prove this result we apply the theory of p-summing operators, a central topic in Banach space theory. We show in the paper other applications of this theory to the study of the communication complexity of XOR games.
165 - Adi Shraibman 2017
We define nondeterministic communication complexity in the model of communication complexity with help of Babai, Hayes and Kimmel. We use it to prove logarithmic lower bounds on the NOF communication complexity of explicit graph functions, which are complementary to the bounds proved by Beame, David, Pitassi and Woelfel.
The ZX-calculus is a graphical language which allows for reasoning about suitably represented tensor networks - namely ZX-diagrams - in terms of rewrite rules. Here, we focus on problems which amount to exactly computing a scalar encoded as a closed tensor network. In general, such problems are #P-hard. However, there are families of such problems which are known to be in P when the dimension is below a certain value. By expressing problem instances from these families as ZX-diagrams, we see that the easy instances belong to the stabilizer fragment of the ZX-calculus. Building on previous work on efficient simplification of qubit stabilizer diagrams, we present simplifying rewrites for the case of qutrits, which are of independent interest in the field of quantum circuit optimisation. Finally, we look at the specific examples of evaluating the Jones polynomial and of counting graph-colourings. Our exposition further champions the ZX-calculus as a suitable and unifying language for studying the complexity of a broad range of classical and quantum problems.
233 - Tomer Kotek 2011
This paper deals with the partition function of the Ising model from statistical mechanics, which is used to study phase transitions in physical systems. A special case of interest is that of the Ising model with constant energies and external field. One may consider such an Ising system as a simple graph together with vertex and edge weights. When these weights are considered indeterminates, the partition function for the constant case is a trivariate polynomial Z(G;x,y,z). This polynomial was studied with respect to its approximability by L. A. Goldberg, M. Jerrum and M. Paterson in 2003. Z(G;x,y,z) generalizes a bivariate polynomial Z(G;t,y), which was studied by D. Andr{e}n and K. Markstr{o}m in 2009. We consider the complexity of Z(G;t,y) and Z(G;x,y,z) in comparison to that of the Tutte polynomial, which is well-known to be closely related to the Potts model in the absence of an external field. We show that Z(G;x,y,z) is #P-hard to evaluate at all points in $mathbb{Q}^3$, except those in an exception set of low dimension, even when restricted to simple graphs which are bipartite and planar. A counting version of the Exponential Time Hypothesis, #ETH, was introduced by H. Dell, T. Husfeldt and M. Wahl{e}n in 2010 in order to study the complexity of the Tutte polynomial. In analogy to their results, we give a dichotomy theorem stating that evaluations of Z(G;t,y) either take exponential time in the number of vertices of $G$ to compute, or can be done in polynomial time. Finally, we give an algorithm for computing Z(G;x,y,z) in polynomial time on graphs of bounded clique-width, which is not known in the case of the Tutte polynomial.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا