Calabi--Yau Operators


الملخص بالإنكليزية

Motivated by mirror symmetry of one-parameter models, an interesting class of Fuchsian differential operators can be singled out, the so-called Calabi--Yau operators, introduced by Almkvist and Zudilin. They conjecturally determine $Sp(4)$-local systems that underly a $mathbb{Q}$-VHS with Hodge numbers [h^{3 0}=h^{2 1}=h^{1 2}=h^{0 3}=1] and in the best cases they make their appearance as Picard--Fuchs operators of families of Calabi--Yau threefolds with $h^{12}=1$ and encode the numbers of rational curves on a mirror manifold with $h^{11}=1$. We review some of the striking properties of this rich class of operators.

تحميل البحث