ﻻ يوجد ملخص باللغة العربية
We examine the relation between gas-phase oxygen abundance and stellar mass---the MZ relation---as a function of the large scale galaxy environment parameterized by the local density. The dependence of the MZ relation on the environment is small. The metallicity where the MZ relation saturates and the slope of the MZ relation are both independent of the local density. The impact of the large scale environment is completely parameterized by the anti-correlation between local density and the turnover stellar mass where the MZ relation begins to saturate. Analytical modeling suggests that the anti-correlation between the local density and turnover stellar mass is a consequence of a variation in the gas content of star-forming galaxies. Across $sim1$ order of magnitude in local density, the gas content at a fixed stellar mass varies by $sim5%$. Variation of the specific star formation rate with environment is consistent with this interpretation. At a fixed stellar mass, galaxies in low density environments have lower metallicities because they are slightly more gas-rich than galaxies in high density environments. Modeling the shape of the mass-metallicity relation thus provides an indirect means to probe subtle variations in the gas content of star-forming galaxies.
We use a sample of star-forming field and protocluster galaxies at z=2.0-2.5 with Keck/MOSFIRE K-band spectra, a wealth of rest-frame UV photometry, and Spitzer/MIPS and Herschel/PACS observations, to dissect the relation between the ratio of IR to U
We study the shape of the gas-phase mass-metallicity relation (MZR) of a combined sample of present-day dwarf and high-mass star-forming galaxies using IZI, a Bayesian formalism for measuring chemical abundances presented in Blanc et al. 2015. We obs
A large variance exists in the amplitude of the Stellar Mass - Halo Mass (SMHM) relation for group and cluster-size halos. Using a sample of 254 clusters, we show that the magnitude gap between the brightest central galaxy (BCG) and its second or fou
Using a sample of 57,377 star-forming galaxies drawn from the Sloan Digital Sky Survey, we study the relationship between gas-phase oxygen abundance and environment in the local Universe. We find that there is a strong relationship between metallicit
We present a new measurement of the gas-phase mass-metallicity relation (MZR), and its dependence on star formation rates (SFRs) at 1.3 < z < 2.3. Our sample comprises 1056 galaxies with a mean redshift of z = 1.9, identified from the Hubble Space Te