ﻻ يوجد ملخص باللغة العربية
Statistical applications in sports have long centered on how to best separate signal (e.g. team talent) from random noise. However, most of this work has concentrated on a single sport, and the development of meaningful cross-sport comparisons has been impeded by the difficulty of translating luck from one sport to another. In this manuscript, we develop Bayesian state-space models using betting market data that can be uniformly applied across sporting organizations to better understand the role of randomness in game outcomes. These models can be used to extract estimates of team strength, the between-season, within-season, and game-to-game variability of team strengths, as well each teams home advantage. We implement our approach across a decade of play in each of the National Football League (NFL), National Hockey League (NHL), National Basketball Association (NBA), and Major League Baseball (MLB), finding that the NBA demonstrates both the largest dispersion in talent and the largest home advantage, while the NHL and MLB stand out for their relative randomness in game outcomes. We conclude by proposing new metrics for judging competitiveness across sports leagues, both within the regular season and using traditional postseason tournament formats. Although we focus on sports, we discuss a number of other situations in which our generalizable models might be usefully applied.
Ice sheet models are used to study the deglaciation of North America at the end of the last ice age (past 21,000 years), so that we might understand whether and how existing ice sheets may reduce or disappear under climate change. Though ice sheet mo
Locally checkable labeling problems (LCLs) are distributed graph problems in which a solution is globally feasible if it is locally feasible in all constant-radius neighborhoods. Vertex colorings, maximal independent sets, and maximal matchings are e
We present a unified approach to improved $L^p$ Hardy inequalities in $R^N$. We consider Hardy potentials that involve either the distance from a point, or the distance from the boundary, or even the intermediate case where distance is taken from a s
We introduce the {Destructive Object Handling} (DOH) problem, which models aspects of many real-world allocation problems, such as shipping explosive munitions, scheduling processes in a cluster with fragile nodes, re-using passwords across multiple
Our aim is to experimentally study the possibility of distinguishing between quantum sources of randomness--recently proved to be theoretically incomputable--and some well-known computable sources of pseudo-randomness. Incomputability is a necessary,