ﻻ يوجد ملخص باللغة العربية
A new detector, the Fermilab Holometer, consists of separate yet identical 39-meter Michelson interferometers. Strain sensitivity achieved is better than $10^{-21} /{sqrt{rm{Hz}}}$ between 1 to 13 MHz from a 130-hr dataset. This measurement exceeds the sensitivity and frequency range made from previous high frequency gravitational wave experiments by many orders of magnitude. Constraints are placed on a stochastic background at 382 Hz resolution. The 3$sigma$ upper limit on $Omega_{rm{GW}}$, the gravitational wave energy density normalized to the closure density, ranges from $5.6 times 10^{12}$ at 1 MHz to $8.4 times 10^{15}$ at 13 MHz. Another result from the same dataset is a search for nearby primordial black hole binaries (PBHB). There are no detectable monochromatic PBHBs in the mass range $0.83$ - $3.5 times 10^{21}$g between the earth and the moon. Projections for a chirp search with the same dataset increases the mass range to $0.59 - 2.5 times 10^{25}$g and distances out to Jupiter. This result presents a new method for placing limits on a poorly constrained mass range of primordial black holes. Additionally, solar system searches for PBHBs place limits on their contribution to the total dark matter fraction.
Advanced LIGO and the next generation of ground-based detectors aim to capture many more binary coalescences through improving sensitivity and duty cycle. Earthquakes have always been a limiting factor at low frequency where neither the pendulum susp
Knowledge of the intensity and phase profiles of spectral components in a coherent optical field is critical for a wide range of high-precision optical applications. One of these is interferometric gravitational wave detectors, which rely on such fie
We present a new method for interferometric imaging that is ideal for the large fields of view and compact arrays common in 21 cm cosmology. We first demonstrate the method with simulations for two very different low frequency interferometers, the Mu
We adapt a method, originally developed for searches for quasi-monochromatic, quasi-infinite gravitational-wave signals, to directly detect new light gauge bosons with laser interferometers, which could be candidates for dark matter. To search for th
One of the most ambitious goals of gravitational-wave astronomy is to observe the stochastic gravitational-wave background. Correlated noise in two or more detectors can introduce a systematic error, which limits the sensitivity of stochastic searche