ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous Hall effect and magnetic orderings in nanothick V$_5$S$_8$

73   0   0.0 ( 0 )
 نشر من قبل Xiaosong Wu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The rise of graphene marks the advent of two-dimensional atomic crystals, which have exhibited a cornucopia of intriguing properties, such as the integer and fractional quantum Hall effects, valley Hall effect, charge density waves and superconductivity, to name a few. Yet, magnetism, a property of extreme importance in both science and technology, remains elusive. There is a paramount need for magnetic two-dimensional crystals. With the availability of many magnetic materials consisting of van der Waals coupled two-dimensional layers, it thus boils down to the question of how the magnetic order will evolve with reducing thickness. Here we investigate the effect of thickness on the magnetic ordering in nanothick V$_5$S$_8$. We uncover an anomalous Hall effect, by which the magnetic ordering in V$_5$S$_8$ down to 3.2 nm is probed. With decreasing thickness, a breakdown of antiferromagnetism is evident, followed by a spin-glass-like state. For thinnest samples, a weak ferromagnetic ordering emerges. The results not only show an interesting effect of reducing thickness on the magnetic ordering in a potential candidate for magnetic two-dimensional crystals, but demonstrate the anomalous Hall effect as a useful characterization tool for magnetic orderings in two-dimensional systems.



قيم البحث

اقرأ أيضاً

245 - Rui Yu , Wei Zhang , H. J. Zhang 2010
The Hall effect, the anomalous Hall effect and the spin Hall effect are fundamental transport processes in solids arising from the Lorentz force and the spin-orbit coupling respectively. The quant
157 - Q. R. Zhang , B. Zeng , Y. C. Chiu 2017
We evaluate the topological character of TaAs through a detailed study of the angular, magnetic-field and temperature dependence of its magnetoresistivity and Hall-effect(s), and of its bulk electronic structure through quantum oscillatory phenomena. At low temperatures, and for fields perpendicular to the electrical current, we extract an extremely large Hall angle $Theta_H$ at higher fields, that is $Theta_H sim 82.5^{circ}$, implying a very pronounced Hall signal superimposed into its magnetoresistivity. For magnetic fields and electrical currents perpendicular to the emph{c}-axis we observe a very pronounced planar Hall-effect, when the magnetic field is rotated within the basal plane. This effect is observed even at higher temperatures, i.e. as high as $T = 100$ K, and predicted recently to result from the chiral anomaly among Weyl points. Superimposed onto this planar Hall, which is an even function of the field, we observe an anomalous planar Hall-signal akin to the one reported for that is an odd function of the field. Below 100 K, negative longitudinal magnetoresistivity (LMR), initially ascribed to the chiral anomaly and subsequently to current inhomogeneities, is observed in samples having different geometries and contact configurations, once the large Hall signal is subtracted. Our measurements reveal a phase transition upon approaching the quantum limit that leads to the reconstruction of the FS and to the concomitant suppression of the negative LMR indicating that it is intrinsically associated with the Weyl dispersion at the Fermi level. For fields along the emph{a}-axis it also leads to a pronounced hysteresis pointing to a field-induced electronic phase-transition. This collection of unconventional tranport observations points to the prominent role played by the axial anomaly among Weyl nodes.
The quantum anomalous Hall (QAH) state is a two-dimensional bulk insulator with a non-zero Chern number in absence of external magnetic fields. Protected gapless chiral edge states enable dissipationless current transport in electronic devices. Dopin g topological insulators with random magnetic impurities could realize the QAH state, but magnetic order is difficult to establish experimentally in the bulk insulating limit. Here we predict that the single quintuple layer of GdBiTe3 film could be a stoichiometric QAH insulator based on ab-initio calculations, which explicitly demonstrate ferromagnetic order and chiral edge states inside the bulk gap. We further investigate the topological quantum phase transition by tuning the lattice constant and interactions. A simple low-energy effective model is presented to capture the salient physical feature of this topological material.
ZrTe$_5$ has been of recent interest as a potential Dirac/Weyl semimetal material. Here, we report the results of experiments performed via in-situ 3D double-axis rotation to extract the full $4pi$ solid angular dependence of the transport properties . A clear anomalous Hall effect (AHE) was detected for every sample, with no magnetic ordering observed in the system to the experimental sensitivity of torque magnetometry. Interestingly, the AHE takes large values when the magnetic field is rotated in-plane, with the values vanishing above $sim 60$ K where the negative longitudinal magnetoresistance (LMR) also disappears. This suggests a close relation in their origins, which we attribute to Berry curvature generated by the Weyl nodes.
Magnetic Weyl semimetals exhibit intriguing transport phenomena due to their non-trivial band structure. Recent experiments in bulk crystals of the shandite-type Co$_3$Sn$_2$S$_2$ have shown that this material system is a magnetic Weyl semimetal. To access the length scales relevant for chiral transport, it is mandatory to fabricate microstructures of this fascinating compound. We therefore have cut micro-ribbons (typical size $0.3~times~3~times~50$mu$m^3$) from Co$_3$Sn$_2$S$_2$ single crystals using a focused beam of Ga$^{2+}$-ions and investigated the impact of the sample dimensions and possible surface doping on the magnetotransport properties. The large intrinsic anomalous Hall effect observed in the micro ribbons is quantitatively consistent with the one in bulk samples. Our results show that focused ion beam cutting can be used for nano-patterning single crystalline Co$_3$Sn$_2$S$_2$, enabling future transport experiments in complex microstructures of this Weyl semimetal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا