ترغب بنشر مسار تعليمي؟ اضغط هنا

Fundamental group of Galois covers of degree 5 surfaces

121   0   0.0 ( 0 )
 نشر من قبل Meirav Amram
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $X$ be an algebraic surface of degree $5$, which is considered as a branch cover of $mathbb{CP}^2$ with respect to a generic projection. The surface has a natural Galois cover with Galois group $S_5$. In this paper, we deal with the fundamental groups of Galois covers of degree $5$ surfaces that degenerate to nice plane arrangements; each of them is a union of five planes such that no three planes meet in a line.



قيم البحث

اقرأ أيضاً

In this paper we consider the Galois covers of algebraic surfaces of degree 6, with all associated planar degenerations. We compute the fundamental groups of those Galois covers, using their degeneration. We show that for 8 types of degenerations the fundamental group of the Galois cover is non-trivial and for 20 types it is trivial. Moreover, we compute the Chern numbers of all the surfaces with this type of degeneration and prove that the signatures of all their Galois covers are negative. We formulate a conjecture regarding the structure of the fundamental groups of the Galois covers based on our findings. With an appendix by the authors listing the detailed computations and an appendix by Guo Zhiming classifying degree 6 planar degenerations.
91 - Amilcar Pacheco 2002
Let $X$ be a smooth projective connected curve of genus $gge 2$ defined over an algebraically closed field $k$ of characteristic $p>0$. Let $G$ be a finite group, $P$ a Sylow $p$-subgroup of $G$ and $N_G(P)$ its normalizer in $G$. We show that if the re exists an etale Galois cover $Yto X$ with group $N_G(P)$, then $G$ is the Galois group wan etale Galois cover $mathcal{Y}tomathcal{X}$, where the genus of $mathcal{X}$ depends on the order of $G$, the number of Sylow $p$-subgroups of $G$ and $g$. Suppose that $G$ is an extension of a group $H$ of order prime to $p$ by a $p$-group $P$ and $X$ is defined over a finite field $mathbb{F}_q$ large enough to contain the $|H|$-th roots of unity. We show that integral idempotent relations in the group ring $mathbb{C}[H]$ imply similar relations among the corresponding generalized Hasse-Witt invariants.
We explain how to reconstruct the category of Artin-Tate $mathbb{R}$-motivic spectra as a deformation of the purely topological $C_2$-equivariant stable category. The special fiber of this deformation is algebraic, and equivalent to an appropriate ca tegory of $C_2$-equivariant sheaves on the moduli stack of formal groups. As such, our results directly generalize the cofiber of $tau$ philosophy that has revolutionized classical stable homotopy theory. A key observation is that the Artin-Tate subcategory of $mathbb{R}$-motivic spectra is easier to understand than the previously studied cellular subcategory. In particular, the Artin-Tate category contains a variant of the $tau$ map, which is a feature conspicuously absent from the cellular category.
In this article, we show that for any non-isotrivial family of abelian varieties over a rational base with big monodromy, those members that have adelic Galois representation with image as large as possible form a density-$1$ subset. Our results can be applied to a number of interesting families of abelian varieties, such as rational families dominating the moduli of Jacobians of hyperelliptic curves, trigonal curves, or plane curves. As a consequence, we prove that for any dimension $g geq 3$, there are infinitely many abelian varieties over $mathbb Q$ with adelic Galois representation having image equal to all of $operatorname{GSp}_{2g}(widehat{mathbb Z})$.
In this paper, we develop and study the theory of weighted fundamental groups of weighted simplicial complexes. When all weights are 1, the weighted fundamental group reduces to the usual fundamental group as a special case. We also study weight
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا