ترغب بنشر مسار تعليمي؟ اضغط هنا

Combining BRITE and ground-based photometry for the Beta Cephei star Nu Eridani: impact on photometric pulsation mode identification and detection of several g modes

96   0   0.0 ( 0 )
 نشر من قبل Gerald Handler
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a simultaneous ground and space-based photometric study of the Beta Cephei star Nu Eridani. Half a year of observations have been obtained by four of the five satellites constituting BRITE-Constellation, supplemented with ground-based photoelectric photometry. We show that carefully combining the two data sets virtually eliminates the aliasing problem that often hampers time-series analyses. We detect 40 periodic signals intrinsic to the star in the light curves. Despite a lower detection limit we do not recover all the pressure and mixed modes previously reported in the literature, but we newly detect six additional gravity modes. This behaviour is a consequence of temporal changes in the pulsation amplitudes that we also detected for some of the p modes. We point out that the dependence of theoretically predicted pulsation amplitude on wavelength is steeper in visual passbands than those observationally measured, to the extent that the three dominant pulsation modes of Nu Eridani would be incorrectly identified using data in optical filters only. We discuss possible reasons for this discrepancy.



قيم البحث

اقرأ أيضاً

The known beta Cephei star HD 180642 was observed by the CoRoT satellite in 2007. From the very high-precision light curve, its pulsation frequency spectrum could be derived for the first time (Degroote and collaborators). In this paper, we obtain ad ditional constraints for forthcoming asteroseismic modeling of the target. Our results are based on both extensive ground-based multicolour photometry and high-resolution spectroscopy. We determine T_eff = 24 500+-1000 K and log g = 3.45+-0.15 dex from spectroscopy. The derived chemical abundances are consistent with those for B stars in the solar neighbourhood, except for a mild nitrogen excess. A metallicity Z = 0.0099+-0.0016 is obtained. Three modes are detected in photometry. The degree l is unambiguously identified for two of them: l = 0 and l = 3 for the frequencies 5.48694 1/d and 0.30818 1/d, respectively. The radial mode is non-linear and highly dominant with an amplitude in the U-filter about 15 times larger than the strongest of the other modes. For the third frequency of 7.36673 1/d found in photometry, two possibilities remain: l = 0 or 3. In the radial velocities, the dominant radial mode presents a so-called stillstand but no clear evidence of the existence of shocks is observed. Four low-amplitude modes are found in spectroscopy and one of them, with frequency 8.4079 1/d, is identified as (l,m)=(3,2). Based on this mode identification, we finally deduce an equatorial rotational velocity of 38+-15 km/s.
We report a multisite photometric campaign for the Beta Cephei star 12 Lacertae. 750 hours of high-quality differential photoelectric Stromgren, Johnson and Geneva time-series photometry were obtained with 9 telescopes during 190 nights. Our frequenc y analysis results in the detection of 23 sinusoidal signals in the light curves. Eleven of those correspond to independent pulsation modes, and the remainder are combination frequencies. We find some slow aperiodic variability such as that seemingly present in several Beta Cephei stars. We perform mode identification from our colour photometry, derive the spherical degree l for the five strongest modes unambiguously and provide constraints on l for the weaker modes. We find a mixture of modes of 0 <= l <= 4. In particular, we prove that the previously suspected rotationally split triplet within the modes of 12 Lac consists of modes of different l; their equal frequency splitting must thus be accidental. One of the periodic signals we detected in the light curves is argued to be a linearly stable mode excited to visible amplitude by nonlinear mode coupling via a 2:1 resonance. We also find a low-frequency signal in the light variations whose physical nature is unclear; it could be a parent or daughter mode resonantly coupled. The remaining combination frequencies are consistent with simple light-curve distortions. The range of excited pulsation frequencies of 12 Lac may be sufficiently large that it cannot be reproduced by standard models. We suspect that the star has a larger metal abundance in the pulsational driving zone, a hypothesis also capable of explaining the presence of Beta Cephei stars in the LMC.
We present the analysis of simultaneous multicolour $uvyI_{rm C}$ photometry and low-resolution spectroscopy for the rapidly rotating $beta$ Cephei star SY Equ. From the photometric time series, we confirm the dominant pulsation frequency, $f_1$ = 6. 029 d$^{-1}$, and we find an evidence for two additional modes. In spectroscopy, the highest peak occurs at $f_{rm a}$ = 0.197 d$^{-1}$ or its alias 0.803 d$^{-1}$. It can be interpreted either in terms of a binary motion or as the $g$-mode pulsation. In addition, we reveal the pulsation mode with frequency of about 6.029 d$^{-1}$, i.e. the same which dominates photometric variations, and a few new candidates. For the dominant frequency we obtain mode identification from the combined photometric and spectroscopic observations. From non-adiabatic pulsation calculations, we show that the frequency of the dominant mode in SY Equ is consistent with the stellar models of much lower effective temperatures than used in many papers.
92 - M. Desmet , M. Briquet , A. Thoul 2009
We present the results of a spectroscopic multisite campaign for the beta Cephei star 12 (DD) Lacertae. Our study is based on more than thousand high-resolution high S/N spectra gathered with 8 different telescopes in a time span of 11 months. In add ition we make use of numerous archival spectroscopic measurements. We confirm 10 independent frequencies recently discovered from photometry, as well as harmonics and combination frequencies. In particular, the SPB-like g-mode with frequency 0.3428 1/d reported before is detected in our spectroscopy. We identify the four main modes as (l1,m1) = (1, 1), (l2,m2) = (0, 0), (l3,m3) = (1, 0) and (l4,m4) = (2, 1) for f1 = 5.178964 1/d, f2 = 5.334224 1/d, f3 = 5.066316 1/d and f4 = 5.490133 1/d, respectively. Our seismic modelling shows that f2 is likely the radial first overtone and that the core overshooting parameter alpha_ov is lower than 0.4 local pressure scale heights.
Chemically peculiar (CP) stars of the upper main sequence are characterised by specific anomalies in the photospheric abundances of some chemical elements. The group of CP2 stars, which encompasses classical Ap and Bp stars, exhibits strictly periodi c light, spectral, and spectropolarimetric variations that can be adequately explained by the model of a rigidly rotating star with persistent surface structures and a stable global magnetic field. Using observations from the Kepler K2 mission, we find that the B9pSi star HD 174356 displays a light curve both variable in amplitude and shape, which is not expected in a CP2 star. Employing archival and new photometric and spectroscopic observations, we carry out a detailed abundance analysis of HD 174356 and discuss its photometric and astrophysical properties in detail. We employ phenomenological modeling to decompose the light curve and the observed radial velocity variability. Our abundance analysis confirms that HD 174356 is a silicon-type CP2 star. No magnetic field stronger than 110G was found. The stars light curve can be interpreted as the sum of two independent strictly periodic signals with P1 = 4.04355(5)d and P2 = 2.11169(3)d. The periods have remained stable over 17 years of observations. In all spectra, HD 174356 appears to be single-lined. From the simulation of the variability characteristics and investigation of stars in the close angular vicinity, we put forth the hypothesis that the peculiar light variability of HD 174356 arises in a single star and is caused by rotational modulation due to surface abundance patches (P1) and g mode pulsation (P2).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا