ﻻ يوجد ملخص باللغة العربية
We present empirical measurements of the radii of 116 stars that host transiting planets. These radii are determined using only direct observables-the bolometric flux at Earth, the effective temperature, and the parallax provided by the Gaia first data release-and thus are virtually model independent, extinction being the only free parameter. We also determine each stars mass using our newly determined radius and the stellar density, itself a virtually model independent quantity from previously published transit analyses. These stellar radii and masses are in turn used to redetermine the transiting planet radii and masses, again using only direct observables. The median uncertainties on the stellar radii and masses are ~8% and ~30%, respectively, and the resulting uncertainties on the planet radii and masses are ~9% and ~22%, respectively. These accuracies are generally larger than previously published model-dependent precisions of ~5% and ~6% on the planet radii and masses, respectively, but the newly determined values are purely empirical. We additionally report radii for 242 stars hosting radial-velocity (non-transiting) planets, with median achieved accuracy of ~2%. Using our empirical stellar masses we verify that the majority of putative retired A stars in the sample are indeed more massive than ~1.2 Msun. Most importantly, the bolometric fluxes and angular radii reported here for a total of 498 planet host stars-with median accuracies of 1.7% and 1.8%, respectively-serve as a fundamental dataset to permit the re-determination of transiting planet radii and masses with the Gaia second data release to ~3% and ~5% accuracy, better than currently published precisions, and determined in an entirely empirical fashion.
In order to understand the exoplanet, you need to understand its parent star. Astrophysical parameters of extrasolar planets are directly and indirectly dependent on the properties of their respective host stars. These host stars are very frequently
The interaction between the magnetic fields of late-type stars and their close-by planets may produce stellar flares as observed in active binary systems. However, in spite of several claims, conclusive evidence is still lacking. We estimate the magn
Using the Spitzer Space Telescope, we observed a transit at 3.6um of KELT-11b (Pepper et al. 2017). We also observed three partial transits from the ground. We simultaneously fit these observations, ground-based photometry from Pepper et al. (2017),
We combine equation of state of dense matter up to twice nuclear saturation density ($n_{rm sat}=0.16, text{fm}^{-3}$) obtained using chiral effective field theory ($chi$EFT), and recent observations of neutron stars to gain insights about the high-d
Young stars and planets both grow by accreting material from the proto-stellar disks. Planetary structure and formation models assume a common origin of the building blocks, yet, thus far, there is no direct conclusive observational evidence correlat