ﻻ يوجد ملخص باللغة العربية
We report here on a new method for calculating the renormalized stress-energy tensor (RSET) in black-hole (BH) spacetimes, which should also be applicable to dynamical BHs and to spinning BHs. This new method only requires the spacetime to admit a single symmetry. So far we developed three variants of the method, aimed for stationary, spherically symmetric, or axially symmetric BHs. We used this method to calculate the RSET of a minimally-coupled massless scalar field in Schwarzschild and Reissner-Nordstrom backgrounds, for several quantum states. We present here the results for the RSET in the Schwarzschild case in Unruh state (the state describing BH evaporation). The RSET is type I at weak field, and becomes type IV at $rlesssim2.78M$. Then we use the RSET results to explore violation of the weak and null Energy conditions. We find that both conditions are violated all the way from $rsimeq4.9M$ to the horizon. We also find that the averaged weak energy condition is violated by a class of (unstable) circular timelike geodesics. Most remarkably, the circular null geodesic at $r=3M$ violates the averaged null energy condition.
We employ a recently developed mode-sum regularization method to compute the renormalized stress-energy tensor of a quantum field in the Kerr background metric (describing a stationary spinning black hole). More specifically, we consider a minimally-
The analysis of gravitino fields in curved spacetimes is usually carried out using the Newman-Penrose formalism. In this paper we consider a more direct approach with eigenspinor-vectors on spheres, to separate out the angular parts of the fields in
We consider the motion of massive and massless particles in a five-dimensional spacetime with a compactified extra-dimensional space where a black hole is localized, i.e., a caged black hole spacetime. We show the existence of circular orbits and rev
The extendibility of spacetime and the existence of weak solutions to the Einstein field equations beyond Cauchy horizons, is a crucial ingredient to examine the limits of General Relativity. Strong Cosmic Censorship serves as a firewall for gravitat
We study the dynamical evolution of a massless scalar perturbation in the Hov{r}ava-Lifshitz black-hole spacetimes with the coupling constants $lambda={1/3}$, $lambda={1/2}$ and $lambda=3$, respectively. Our calculation shows that, for the three case