ﻻ يوجد ملخص باللغة العربية
In the face of serious infectious diseases, governments endeavour to implement containment measures such as public vaccination at a macroscopic level. Meanwhile, individuals tend to protect themselves by avoiding contacts with infections at a microscopic level. However, a comprehensive understanding of how such combined strategy influences epidemic dynamics is still lacking. We study a susceptible-infected-susceptible epidemic model with imperfect vaccination on dynamic contact networks, where the macroscopic intervention is represented by random vaccination of the population and the microscopic protection is characterised by susceptible individuals rewiring contacts from infective neighbours. In particular, the model is formulated both in populations without and then with demographic effects. Using the pairwise approximation and the probability generating function approach, we investigate both dynamics of the epidemic and the underlying network. For populations without demography, the emerging degree correlations, bistable states, and oscillations demonstrate the combined effects of the public vaccination program and individual protective behavior. Compared to either strategy in isolation, the combination of public vaccination and individual protection is more effective in preventing and controlling the spread of infectious diseases by increasing both the invasion threshold and the persistence threshold. For populations with additional demographic factors, the integration between vaccination intervention and individual rewiring may promote epidemic spreading due to the birth effect. Moreover, the degree distributions of both networks in the steady state is closely related to the degree distribution of newborns, which leads to uncorrelated connectivity. All the results demonstrate the importance of both local protection and global intervention, as well as the demographic effects.
Due to its high lethality amongst the elderly, the safety of nursing homes has been of central importance during the COVID-19 pandemic. With test procedures becoming available at scale, such as antigen or RT-LAMP tests, and increasing availability of
There are often multiple diseases with cross immunity competing for vaccination resources. Here we investigate the optimal vaccination program in a two-layer Susceptible-Infected-Removed (SIR) model, where two diseases with cross immunity spread in t
We develop a mathematical framework to study the economic impact of infectious diseases by integrating epidemiological dynamics with a kinetic model of wealth exchange. The multi-agent description leads to study the evolution over time of a system of
In the study of infectious diseases on networks, researchers calculate epidemic thresholds to help forecast whether a disease will eventually infect a large fraction of a population. Because network structure typically changes in time, which fundamen
Vaccination and outbreak monitoring are essential tools for preventing and minimizing outbreaks of infectious diseases. Targeted strategies, where the individuals most important for monitoring or preventing outbreaks are selected for intervention, of