ﻻ يوجد ملخص باللغة العربية
We consider one-dimensional propagation of quantum light in the presence of a block of material, with a full account of dispersion and absorption. The electromagnetic zero-point energy for some frequencies is damped (suppressed) by the block below the free-space value, while for other frequencies it is increased. We also calculate the regularized (Casimir) zero-point energy at each frequency and find that it too is damped below the free-space value (zero) for some frequencies. The total Casimir energy is positive.
Entangled coherent states are shown to emerge, with high fidelity, when mixing coherent and squeezed vacuum states of light on a beam-splitter. These maximally entangled states, where photons bunch at the exit of a beamsplitter, are measured experime
Beam alignment is an important practical aspect of the application of squeezed states of light. Misalignments in the detection of squeezed light result in a reduction of the observable squeezing level. In the case of squeezed vacuum fields that conta
Elastic scattering of laser radiation due to vacuum polarization by spatially modulated strong electromagnetic fields is considered. The Bragg interference arising at a specific impinging direction of the probe wave concentrates the scattered light i
Schrodingers famous Gedankenexperiment has inspired multiple generations of physicists to think about apparent paradoxes that arise when the logic of quantum physics is applied to macroscopic objects. The development of quantum technologies enabled u
Quantum noise will be the dominant noise source for the advanced laser interferometric gravitational wave detectors currently under construction. Squeezing-enhanced laser interferometers have been recently demonstrated as a viable technique to reduce