ﻻ يوجد ملخص باللغة العربية
We present ATCA continuum observations at a wavelength of 6.8 mm of five debris disks: $beta$ Pictoris, q$^1$ Eridani, HD 107146, HD 181327, and HD 95086. These observations provide the detection at the longest wavelengths obtained to date for all these debris disks. By combining our 6.8 mm data with previous detections at shorter sub-millimeter/millimeter wavelengths we measure the long wavelength spectral index of these sources. We then use previous estimates for the temperature of the emitting dust to derive the spectral index of the dust emissivity. Under the assumption that all the detected flux comes from dust only, we constrain the slope of the solid size distribution, assumed to be a power-law. The values that we infer for the slope of the size distribution range between about 3.36 and 3.50. We compare our findings with the case of the Fomalhaut debris disk and use these results to test the predictions of collisional cascades of planetesimal belts.
Context. Little is known about the properties of the warm (Tdust >~ 150 K) debris disk material located close to the central star, which has a more direct link to the formation of terrestrial planets than the low temperature debris dust that has been
Circumstantial evidence suggests that most known extra-solar planetary systems are survivors of violent dynamical instabilities. Here we explore how giant planet instabilities affect the formation and survival of terrestrial planets. We simulate plan
The new NIKA2 camera at the IRAM 30m radiotelescope was used to observe three known debris disks in order to constrain the SED of their dust emission in the millimeter wavelength domain. We have found that the spectral index between the two NIKA2 ban
The presence of dusty debris around main sequence stars denotes the existence of planetary systems. Such debris disks are often identified by the presence of excess continuum emission at infrared and (sub-)millimetre wavelengths, with measurements at
The majority of debris discs discovered so far have only been detected through infrared excess emission above stellar photospheres. While disc properties can be inferred from unresolved photometry alone under various assumptions for the physical prop