ترغب بنشر مسار تعليمي؟ اضغط هنا

Monotonicity of functions and sign changes of their Caputo derivatives

117   0   0.0 ( 0 )
 نشر من قبل Kai Diethelm
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English
 تأليف Kai Diethelm




اسأل ChatGPT حول البحث

It is well known that a continuously differentiable function is monotone in an interval $[a,b]$ if and only if its first derivative does not change its sign there. We prove that this is equivalent to requiring that the Caputo derivatives of all orders $alpha in (0,1)$ with starting point $a$ of this function do not have a change of sign there. In contrast to what is occasionally conjectured, it not sufficient if the Caputo derivatives have a constant sign for a few values of $alpha in (0,1)$ only.



قيم البحث

اقرأ أيضاً

In this paper necessary and sufficient conditions are deduced for the starlikeness of Bessel functions of the first kind and their derivatives of the second and third order by using a result of Shah and Trimble about transcendental entire functions w ith univalent derivatives and some Mittag-Leffler expansions for the derivatives of Bessel functions of the first kind, as well as some results on the zeros of these functions.
177 - Yilin Chen 2021
In this paper, sums represented in (3) are studied. The expressions are derived in terms of Bessel functions of the first and second kinds and their integrals. Further, we point out the integrals can be written as a Meijer G function.
Let $k$ be a natural number and $s$ be real. In the 1-dimensional case, the $k$-th order derivatives of the functions $lvert xrvert^s$ and $log lvert xrvert$ are multiples of $lvert xrvert^{s-k}$ and $lvert xrvert^{-k}$, respectively. In the present paper, we generalize this fact to higher dimensions by introducing a suitable norm of the derivatives, and give the exact values of the multiples.
We extend the axiomatization for detecting and quantifying sign changes of Meher and Murty to sequences of complex numbers. We further generalize this result when the sequence is comprised of the coefficients of an $L$-function. As immediate applicat ions, we prove that there are sign changes in intervals within sequences of coefficients of GL(2) holomorphic cusp forms, GL(2) Maass forms, and GL(3) Maass forms. Building on previous works by the authors, we prove that there are sign changes in intervals within sequences of partial sums of coefficients of GL(2) holomorphic cusp forms and Maass forms.
We study the uncertainty principles related to the generalized Logan problem in $mathbb{R}^{d}$. Our main result provides the complete solution of the following problem: for a fixed $min mathbb{Z}_{+}$, find [ sup{|x|colon (-1)^{m}f(x)>0}cdot sup {|x |colon xin mathrm{supp},widehat{f},}to inf, ] where the infimum is taken over all nontrivial positive definite bandlimited functions such that $int_{mathbb{R}^d}|x|^{2k}f(x),dx=0$ for $k=0,dots,m-1$ if $mge 1$. We also obtain the uncertainty principle for bandlimited functions related to the recent result by Bourgain, Clozel, and Kahane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا