ﻻ يوجد ملخص باللغة العربية
For more than 80 years, the counterintuitive predictions of quantum theory have stimulated debate about the nature of reality. In his seminal work, John Bell proved that no theory of nature that obeys locality and realism can reproduce all the predictions of quantum theory. Bell showed that in any local realist theory the correlations between distant measurements satisfy an inequality and, moreover, that this inequality can be violated according to quantum theory. This provided a recipe for experimental tests of the fundamental principles underlying the laws of nature. In the past decades, numerous ingenious Bell inequality tests have been reported. However, because of experimental limitations, all experiments to date required additional assumptions to obtain a contradiction with local realism, resulting in loopholes. Here we report on a Bell experiment that is free of any such additional assumption and thus directly tests the principles underlying Bells inequality. We employ an event-ready scheme that enables the generation of high-fidelity entanglement between distant electron spins. Efficient spin readout avoids the fair sampling assumption (detection loophole), while the use of fast random basis selection and readout combined with a spatial separation of 1.3 km ensure the required locality conditions. We perform 245 trials testing the CHSH-Bell inequality $S leq 2$ and find $S = 2.42 pm 0.20$. A null hypothesis test yields a probability of $p = 0.039$ that a local-realist model for space-like separated sites produces data with a violation at least as large as observed, even when allowing for memory in the devices. This result rules out large classes of local realist theories, and paves the way for implementing device-independent quantum-secure communication and randomness certification.
A recent experiment yielding results in agreement with quantum theory and violating Bell inequalities was interpreted [Nature 526 (29 Octobert 2015) p. 682 and p. 649] as ruling out any local realistic theory of nature. But quantum theory itself is b
So far, all experimental tests of Bell inequalities which must be satisfied by all local realistic hidden-variable theories and are violated by quantum mechanical predictions have left at least one loophole open. We propose a feasible setup allowing
The recently reported violation of a Bell inequality using entangled electronic spins in diamonds (Hensen et al., Nature 526, 682-686) provided the first loophole-free evidence against local-realist theories of nature. Here we report on data from a s
A finite non-classical framework for physical theory is described which challenges the conclusion that the Bell Inequality has been shown to have been violated experimentally, even approximately. This framework postulates the universe as a determinis
We demonstrate hybrid entanglement of photon pairs via the experimental violation of a Bell inequality with two different degrees of freedom (DOF), namely the path (linear momentum) of one photon and the polarization of the other photon. Hybrid entan