ﻻ يوجد ملخص باللغة العربية
The present work aims at deriving theoretical guaranties on the behavior of some cross-validation procedures applied to the $k$-nearest neighbors ($k$NN) rule in the context of binary classification. Here we focus on the leave-$p$-out cross-validation (L$p$O) used to assess the performance of the $k$NN classifier. Remarkably this L$p$O estimator can be efficiently computed in this context using closed-form formulas derived by cite{CelisseMaryHuard11}. We describe a general strategy to derive moment and exponential concentration inequalities for the L$p$O estimator applied to the $k$NN classifier. Such results are obtained first by exploiting the connection between the L$p$O estimator and U-statistics, and second by making an intensive use of the generalized Efron-Stein inequality applied to the L$1$O estimator. One other important contribution is made by deriving new quantifications of the discrepancy between the L$p$O estimator and the classification error/risk of the $k$NN classifier. The optimality of these bounds is discussed by means of several lower bounds as well as simulation experiments.
The lasso procedure is ubiquitous in the statistical and signal processing literature, and as such, is the target of substantial theoretical and applied research. While much of this research focuses on the desirable properties that lasso possesses---
Nonparametric estimation of mutual information is used in a wide range of scientific problems to quantify dependence between variables. The k-nearest neighbor (knn) methods are consistent, and therefore expected to work well for large sample size. Th
The lasso and related sparsity inducing algorithms have been the target of substantial theoretical and applied research. Correspondingly, many results are known about their behavior for a fixed or optimally chosen tuning parameter specified up to unk
We consider a problem of multiclass classification, where the training sample $S_n = {(X_i, Y_i)}_{i=1}^n$ is generated from the model $mathbb P(Y = m | X = x) = eta_m(x)$, $1 leq m leq M$, and $eta_1(x), dots, eta_M(x)$ are unknown $alpha$-Holder co
The asymptotic optimality (a.o.) of various hyper-parameter estimators with different optimality criteria has been studied in the literature for regularized least squares regression problems. The estimators include e.g., the maximum (marginal) likeli