ترغب بنشر مسار تعليمي؟ اضغط هنا

Axino dark matter with low reheating temperature

346   0   0.0 ( 0 )
 نشر من قبل Krzysztof Turzynski
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine axino dark matter in the regime of a low reheating temperature T_R after inflation and taking into account that reheating is a non-instantaneous process. This can have a significant effect on the dark matter abundance, mainly due to entropy production in inflaton decays. We study both thermal and non-thermal production of axinos in the context of the MSSM with ten free parameters. We identify the ranges of the axino mass and the reheating temperature allowed by the LHC and other particle physics data in different models of axino interactions. We confront these limits with cosmological constraints coming the observed dark matter density, large structures formation and big bang nucleosynthesis. We find a number of differences in the phenomenologically acceptable values of the axino mass and the reheating temperature relative to previous studies. In particular, an upper bound on the axino mass becomes dependent on T_R, reaching a maximum value at T_R~10^2 GeV. If the lightest ordinary supersymmetric particle is a wino or a higgsino, we obtain lower a limit of approximately 10 GeV for the reheating temperature. We demonstrate also that entropy production during reheating affects the maximum allowed axino mass and lowest values of the reheating temperature.



قيم البحث

اقرأ أيضاً

The evolution of the Universe between inflation and the onset of big bang nucleosynthesis is difficult to probe and largely unconstrained. This ignorance profoundly limits our understanding of dark matter: we cannot calculate its thermal relic abunda nce without knowing when the Universe became radiation dominated. Fortunately, small-scale density perturbations provide a probe of the early Universe that could break this degeneracy. If dark matter is a thermal relic, density perturbations that enter the horizon during an early matter-dominated era grow linearly with the scale factor prior to reheating. The resulting abundance of substructure boosts the annihilation rate by several orders of magnitude, which can compensate for the smaller annihilation cross sections that are required to generate the observed dark matter density in these scenarios. In particular, thermal relics with masses less than a TeV that thermally and kinetically decouple prior to reheating may already be ruled out by Fermi-LAT observations of dwarf spheroidal galaxies. Although these constraints are subject to uncertainties regarding the internal structure of the microhalos that form from the enhanced perturbations, they open up the possibility of using gamma-ray observations to learn about the reheating of the Universe.
We perform a systematic analysis of dark matter production during post-inflationary reheating. Following the period of exponential expansion, the inflaton begins a period of damped oscillations as it decays. These oscillations and the evolution of te mperature of the thermalized decay products depend on the shape of the inflaton potential $V(Phi)$. We consider potentials of the form $Phi^k$. Standard matter-dominated oscillations occur for $k=2$. In general, the production of dark matter may depend on either (or both) the maximum temperature after inflation, or the reheating temperature, where the latter is defined when the Universe becomes radiation dominated. We show that dark matter production is sensitive to the inflaton potential and depends heavily on the maximum temperature when $k>2$. We also consider the production of dark matter with masses larger than the reheating temperature.
Supersymmetric theories with gravitino dark matter generally do not allow the high reheating temperature required by thermal leptogenesis without running afoul of relic abundance or big bang nucleosynthesis constraints. We report on a successful sear ch for parameter space that does satisfy these requirements. The main implication is the near degeneracy of the gluino with the other neutralinos in the spectrum. The leading discovery channel at the LHC for this scenario is through monojet plus missing energy events.
We discuss the gravitational creation of superheavy particles $chi$ in an inflationary scenario with a quartic potential and a non-minimal coupling between the inflaton $varphi$ and the Ricci curvature: $xi varphi^2 R/2$. We show that for large const ants $xi >> 1$, there can be abundant production of particles $chi$ with masses largely exceeding the inflationary Hubble rate $H_{infl}$, up to $(a~few) times xi H_{infl}$, even if they are conformally coupled to gravity. We discuss two scenarios involving these gravitationally produced particles $chi$. In the first scenario, the inflaton has only gravitational interactions with the matter sector and the particles $chi$ reheat the Universe. In this picture, the inflaton decays only due to the cosmic expansion, and effectively contributes to dark radiation, which can be of the observable size. The existing limits on dark radiation lead to an upper bound on the reheating temperature. In the second scenario, the particles $chi$ constitute Dark Matter, if substantially stable. In this case, their typical masses should be in the ballpark of the Grand Unification scale.
We consider cosmological consequences of a heavy axino, decaying to the neutralino in R-parity conserving models. The importance and influence of the axino decay on the resultant abundance of neutralino dark matter depends on the lifetime and the ene rgy density of axino. For a high reheating temperature after inflation, copiously produced axinos dominate the energy density of the universe and its decay produces a large amount of entropy. As a bonus, we obtain that the upper bound on the reheating temperature after inflation via gravitino decay can be moderated, because the entropy production by the axino decay more or less dilutes the gravitinos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا