ﻻ يوجد ملخص باللغة العربية
Since the discovery of superconductivity in LaFePO in 2006, numerous iron-based superconductors have been identified within diverse structure families, all of which combine iron with a group-V (pnictogen) or group-VI (chalco- gen) element. Unconventional superconductivity is extremely rare among transition metal compounds outside these layered iron systems and the cuprates, and it is almost universally associated with highly anisotropic electronic properties and nearly 2D Fermi surface geometries. The iron-based intermetallic YFe$_2$Ge$_2$ features a 3D Fermi surface and a strongly enhanced low temperature heat capacity, which signals strong electronic correlations. We present data from a new generation of high quality samples of YFe$_2$Ge$_2$, which show superconducting transition anomalies below 1.8 K in thermodynamic as well as transport measurements, establishing that superconductivity is intrinsic in this layered iron compound outside the known superconducting iron pnictide or chalcogenide families. The Fermi surface geometry of YFe$_2$Ge$_2$ resembles that of KFe$_2$As$_2$ in the high pressure collapsed tetragonal phase, in which superconductivity at temperatures as high as 10 K has recently been reported, suggesting an underlying connection between the two systems.
Using a new horizontal flux growth technique to produce high quality crystals of the unconventional superconductor YFe$_2$Ge$_2$ has led to a seven-fold reduction in disorder scattering, resulting in mm-sized crystals with residual resistivities $sim
The surprising discovery of tripling the superconducting critical temperature of KFe$_2$As$_2$ at high pressures issued an intriguing question of how the superconductivity in the collapsed tetragonal phase differs from that in the non-collapsed phase
The phase diagram of the layered organic superconductor $kappa$-(ET)$_{2}$Cu[N(CN)$_{2}$]Cl has been accurately measured from a combination of $^{1}$H NMR and AC susceptibility techniques under helium gas pressure. The domains of stability of antifer
We investigated the occurrence and nature of superconductivity in single crystals of YFe$_2$Ge$_2$ grown out of Sn flux by employing x-ray diffraction, electrical resistivity, and specific heat measurements. We found that the residual resistivity rat
We have measured the resistivity, optical conductivity, and magnetic susceptibility of LaSb$_2$ to search for clues as to the cause of the extraordinarily large linear magnetoresistance and to explore the properties of the superconducting state. We f