ترغب بنشر مسار تعليمي؟ اضغط هنا

Rapid Evolution of the Photosystem II Electronic Structure during Water Splitting

234   0   0.0 ( 0 )
 نشر من قبل Katherine Davis
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Photosynthetic water oxidation is a fundamental process that sustains the biosphere. A Mn$_{4}$Ca cluster embedded in the photosystem II protein environment is responsible for the production of atmospheric oxygen. Here, time-resolved x-ray emission spectroscopy (XES) was used to observe the process of oxygen formation in real time. These experiments reveal that the oxygen evolution step, initiated by three sequential laser flashes, is accompanied by rapid (within 50 $mu$s) changes to the Mn K$beta$ XES spectrum. However, no oxidation of the Mn$_{4}$Ca core above the all Mn$^{text{IV}}$ state was detected to precede O-O bond formation. A new mechanism featuring Mn$^{text{IV}}$=O formation in the S$_{3}$ state is proposed to explain the spectroscopic results. This chemical formulation is consistent with the unique reactivity of the S$_{3}$ state and explains facilitation of the following S$_{3}$ to S$_{0}$ transition, resolving in part the kinetic limitations associated with O-O bond formation. In the proposed mechanism, O-O bond formation precedes transfer of the final (4$^{text{th}}$) electron from the Mn$_{4}$Ca cluster, in agreement with experiment.



قيم البحث

اقرأ أيضاً

The photosystem II reaction centre is the photosynthetic complex responsible for oxygen production on Earth. Its water splitting function is particularly favoured by the formation of a stable charge separated state via a pathway that starts at an acc essory chlorophyll. Here we envision a photovoltaic device that places one of these complexes between electrodes and investigate how the mean current and its fluctuations depend on the microscopic interactions underlying charge separation in the pathway considered. Our results indicate that coupling to well resolved vibrational modes does not necessarily offer an advantage in terms of power output but can lead to photo-currents with suppressed noise levels characterizing a multi-step ordered transport process. Besides giving insight into the suitability of these complexes for molecular-scale photovoltaics, our work suggests a new possible biological function for the vibrational environment of photosynthetic reaction centres, namely, to reduce the intrinsic current noise for regulatory processes.
114 - Chuan Cheng 2021
We investigate the role of nuclear motion and strong-field-induced electronic couplings during the double ionization of deuterated water using momentum-resolved coincidence spectroscopy. By examining the three-body dicationic dissociation channel, D$ ^{+}$/D$^{+}$/O, for both few- and multi-cycle laser pulses, strong evidence for intra-pulse dynamics is observed. The extracted angle- and energy-resolved double ionization yields are compared to classical trajectory simulations of the dissociation dynamics occurring from different electronic states of the dication. In contrast with measurements of single photon double ionization, pronounced departure from the expectations for vertical ionization is observed, even for pulses as short as 10~fs in duration. We outline numerous mechanisms by which the strong laser field can modify the nuclear wavefunction en-route to final states of the dication where molecular fragmentation occurs. Specifically, we consider the possibility of a coordinate-dependence to the strong-field ionization rate, intermediate nuclear motion in monocation states prior to double ionization, and near-resonant laser-induced dipole couplings in the ion. These results highlight the fact that, for small and light molecules such as D$_2$O, a vertical-transition treatment of the ionization dynamics is not sufficient to reproduce the features seen experimentally in the strong field coincidence double-ionization data.
Hydrogen bond (H-bond) covalency has recently been observed in ice and liquid water, while the penetrating molecular orbitals (MOs) in the H-bond region of most typical water dimer system, (H2O)2, have also been discovered. However, obtaining the qua ntitative contribution of these MOs to the H-bond interaction is still problematic. In this work, we introduced the orbital-resolved electron density projected integral (EDPI) along the H-bond to approach this problem. The calculations show that, surprisingly, the electronic occupied orbital (HOMO-4) of (H2O)2 accounts for about 40% of the electron density at the bond critical point. Moreover, the charge transfer analysis visualizes the electron accumulating effect of the orbital interaction within the H-bond between water molecules, supporting its covalent-like character. Our work expands the classical understanding of H-bond with specific contributions from certain MOs, and will also advance further research into such covalency and offer quantitative electronic structure insights into intermolecular systems.
In 2D electronic spectroscopy studies, long-lived quantum beats have recently been observed in photosynthetic systems, and it has been suggested that the beats are produced by quantum mechanically mixed electronic and vibrational states. Concerning t he electronic-vibrational quantum mixtures, the impact of protein-induced fluctuations was examined by calculating the 2D electronic spectra of a weakly coupled dimer with vibrational modes in the resonant condition [J. Chem. Phys. 142, 212403 (2015)]. This analysis demonstrated that quantum mixtures of the vibronic resonance are rather robust under the influence of the fluctuations at cryogenic temperatures, whereas the mixtures are eradicated by the fluctuations at physiological temperatures. However, this conclusion cannot be generalized because the magnitude of the coupling inducing the quantum mixtures is proportional to the inter-pigment coupling. In this study, we explore the impact of the fluctuations on electronic-vibrational quantum mixtures in a strongly coupled dimer. with an off-resonant vibrational mode. Toward this end, we calculate electronic energy transfer (EET) dynamics and 2D electronic spectra of a dimer that corresponds to the most strongly coupled bacteriochlorophyll molecules in the Fenna-Matthews-Olson complex in a numerically accurate manner. The quantum mixtures are found to be robust under the exposure of protein-induced fluctuations at cryogenic temperatures, irrespective of the resonance. At 300 K, however, the quantum mixing is disturbed more strongly by the fluctuations, and therefore, the beats in the 2D spectra become obscure even in a strongly coupled dimer with a resonant vibrational mode. Further, the overall behaviors of the EET dynamics are demonstrated to be dominated by the environment and coupling between the 0-0 vibronic transitions as long as the Huang-Rhys factor of the vibrational mode is small.
Transitional metal ions widely exist in biological environments and are crucial to many life-sustaining physiological processes. Recently, transition metal ion such as Cu$^{2+}$, Zn$^{2+}$, Ni$^{2+}$, have been shown can increase the solubilities of aromatic biomolecules. Comparing with Cu$^{2+}$, Zn$^{2+}$ shows less enhancement to the solubilities of biomolecules such as tryptophan (Trp). On the other hand, Zn$^{2+}$ has a higher concentration in human blood plasma and appears in protein the most among transition metal ions, clarifying whether Zn$^{2+}$ can enhance the solubilities of other aromatic amino acids is significantly important. Herein, we observed that the solubility of aromatic amino acid histidine (His) is greatly enhanced in ZnCl$_2$ solution. Based on first principle calculations, this enhancement of solubility is attributed to cation-$pi$ interaction between His and Zn$^{2+}$. Our results here are of great importance for the bioavailability of aromatic drugs and provide new insights for the understanding of physiological functions of Zn$^{2+}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا