ﻻ يوجد ملخص باللغة العربية
Hexagonal boron nitride (hBN) is drawing increasing attention as an insulator and substrate material to develop next generation graphene-based electronic devices. In this paper, we investigate the quantum transport in heterostructures consisting of a few atomic layers thick hBN film sandwiched between graphene nanoribbon electrodes. We show a gate-controllable vertical transistor exhibiting strong negative differential resistance (NDR) effect with multiple resonant peaks, which stay pronounced for various device dimensions. We find two distinct mechanisms that are responsible for NDR, depending on the gate and applied biases, in the same device. The origin of first mechanism is a Fabry-Pe like interference and that of the second mechanism is an in-plane wave vector matching when the Dirac points of the electrodes align. The hBN layers can induce an asymmetry in the current-voltage characteristics which can be further modulated by an applied bias. We find that the electron-phonon scattering introduces the decoherence and therefore suppresses first mechanism whereas second mechanism remains relatively unaffected. We also show that the NDR features are tunable by varying device dimensions. The NDR feature with multiple resonant peaks, combined with the ultrafast tunneling speed provides prospect for the graphene-hBN-graphene heterostructure in the high-performance electronics.
Two-dimensional (2D) crystals, such as graphene, hexagonal boron nitride and transitional metal dichalcogenides, have attracted tremendous amount of attention over the past decade due to their extraordinary thermal, electrical and optical properties,
The design of stacks of layered materials in which adjacent layers interact by van der Waals forces[1] has enabled the combination of various two-dimensional crystals with different electrical, optical and mechanical properties, and the emergence of
Recent developments in the technology of van der Waals heterostructures made from two-dimensional atomic crystals have already led to the observation of new physical phenomena, such as the metal-insulator transition and Coulomb drag, and to the reali
We demonstrate gate-tunable resonant tunneling and negative differential resistance between two rotationally aligned bilayer graphene sheets separated by bilayer WSe2. We observe large interlayer current densities of 2 uA/um2 and 2.5 uA/um2, and peak
Van der Waals heterostructures of graphene and hexagonal boron nitride feature a moire superlattice for graphenes Dirac electrons. Here, we review the effects generated by this superlattice, including a specific miniband structure featuring gaps and