ترغب بنشر مسار تعليمي؟ اضغط هنا

The Deepest Constraints on Radio and X-ray Magnetic Activity in Ultracool Dwarfs from WISE J104915.57-531906.1

166   0   0.0 ( 0 )
 نشر من قبل Rachel Osten
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report upper limits to the radio and X-ray emission from the newly discovered ultracool dwarf binary WISE J104915.57$-$531906.1 (Luhman 16AB). As the nearest ultracool dwarf binary (2 pc), its proximity offers a hefty advantage to studying plasma processes in ultracool dwarfs which are more similar in gross properties (radius, mass, temperature) to the solar system giant planets than stars. The radio and X-ray emission upper limits from the Australia Telescope Compact Array (ATCA) and Chandra observations, each spanning multiple rotation periods, provide the deepest fractional radio and X-ray luminosities to date on an ultracool dwarf, with $log{(L_{rm r, u}/L_{rm bol}) [Hz^{-1}]} < -18.1$ (5.5 GHz), $log{(L_{rm r, u}/L_{rm bol}) [Hz^{-1}]} < -17.9$ (9 GHz), and $log{(L_{rm x}/L_{rm bol})} < -5.7$. While the radio upper limits alone do not allow for a constraint on the magnetic field strength, we limit the size of any coherently emitting region in our line of sight to less than 0.2% of the radius of one of the brown dwarfs. Any source of incoherent emission must span less than about 20% of the brown dwarf radius, assuming magnetic field strengths of a few tens to a few hundred Gauss. The fast rotation and large amplitude photometric variability exhibited by the T dwarf in the Luhman 16AB system are not accompanied by enhanced nonthermal radio emission, nor enhanced heating to coronal temperatures, as observed on some higher mass ultracool dwarfs, confirming the expected decoupling of matter and magnetic field in cool neutral atmospheres.



قيم البحث

اقرأ أيضاً

183 - Eric E. Mamajek 2013
I report some observations and calculations related to the new nearby brown dwarf at d = 2 pc discovered by Luhman (2013, ApJ Letters, in press; arXiv:1303.2401). I report archival astrometry and photometry of the new object from IRAS (epoch 1983.5; IRAS Z10473-5303), AKARI (epoch 2007.0; AKARI J1049166-531907), and the Guide Star Catalog (epoch 1995.304; GSC2.2 S11132026703, GSC2.3 S4BM006703). A SuperCOSMOS scan of a plate taken with the ESO Schmidt Telescope (epoch 1984.169) shows the source as elongated (PA = 138 deg). Membership of the binary to any of the known nearby young groups within 100 pc appears unlikely based on the available astrometry and photometry. Based on the proper motion and parallax, a Monte Carlo simulation of thin disk/thick disk/halo stars is suggestive that the binary is, unsurprisingly, most likely a thin disk star (~96%), with a ~4% chance that it is a thick disk (and negligible chance that it is a halo star). I suggest that this important new nearby binary be called by either its provisional Washington Double Star catalog identifier (Luhman 16), or perhaps Luhman-WISE 1, either of which is easier to remember than the WISE identifier.
[Abridged] As part of our on-going investigation into the magnetic field properties of ultracool dwarfs, we present simultaneous radio, X-ray, and H-alpha observations of three M9.5-L2.5 dwarfs (BRI0021-0214, LSR060230.4+391059, and 2MASSJ052338.2-14 0302). We do not detect X-ray or radio emission from any of the three sources, despite previous detections of radio emission from BRI0021 and 2M0523-14. Steady and variable H-alpha emission are detected from 2M0523-14 and BRI0021, respectively, while no H-alpha emission is detected from LSR0602+39. Overall, our survey of nine M8-L5 dwarfs doubles the number of ultracool dwarfs observed in X-rays, and triples the number of L dwarfs, providing in addition the deepest limits to date, log(L_X/L_bol)<-5. With this larger sample we find the first clear evidence for a substantial reduction in X-ray activity, by about two orders of magnitude, from mid-M to mid-L dwarfs. We find that the decline in both X-rays and H-alpha roughly follows L_{X,Halpha}/L_bol ~ 10^[-0.4x(SP-M6)] for SP>M6. In the radio band, however, the luminosity remains relatively unchanged from M0 to L4, leading to a substantial increase in L_rad/L_bol. Our survey also provides the first comprehensive set of simultaneous radio/X-ray/H-alpha observations of ultracool dwarfs, and reveals a clear breakdown of the radio/X-ray correlation beyond spectral type M7, evolving smoothly from L_{ u,rad}/L_X ~ 10^-15.5 to ~10^-11.5 Hz^-1 over the narrow spectral type range M7-M9. This breakdown reflects the substantial reduction in X-ray activity beyond M7, but its physical origin remains unclear since, as evidenced by the uniform radio emission, there is no drop in the field dissipation and particle acceleration efficiency.
We present two epochs of MPG/ESO 2.2m GROND simultaneous 6-band ($rizJHK$) photometric monitoring of the closest known L/T transition brown dwarf binary WISE J104915.57-531906.1AB. We report here the first resolved variability monitoring of both the T0.5 and L7.5 components. We obtained 4 hours of focused observations on the night of UT 2013-04-22, as well as 4 hours of defocused (unresolved) observations on the night of UT 2013-04-16. We note a number of robust trends in our light curves. The $r$ and $i$ light curves appear to be anticorrelated with $z$ and $H$ for the T0.5 component and in the unresolved lightcurve. In the defocused dataset, $J$ appears correlated with $z$ and $H$ and anticorrelated with $r$ and $i$, while in the focused dataset we measure no variability for $J$ at the level of our photometric precision, likely due to evolving weather phenomena. In our focused T0.5 component lightcurve, the $K$ band lightcurve displays a significant phase offset relative to both $H$ and $z$. We argue that the measured phase offsets are correlated with atmospheric pressure probed at each band, as estimated from 1D atmospheric models. We also report low-amplitude variability in $i$ and $z$ intrinsic to the L7.5 component.
292 - M. McLean , 2011
[Abridged] We present a new radio survey of about 100 late-M and L dwarfs undertaken with the VLA. The sample was chosen to explore the role of rotation in the radio activity of ultracool dwarfs. Combining the new sample with results from our previou s studies and from the literature, we compile the largest sample to date of ultracool dwarfs with radio observations and measured rotation velocities (167 objects). In the spectral type range M0-M6 we find a radio activity-rotation relation, with saturation at log(L_rad/L_bol) 10^(-7.5) above vsini~5 km/s, similar to the relation in H-alpha and X-rays. However, at spectral types >M7 the ratio of radio to bolometric luminosity increases regardless of rotation velocity, and the scatter in radio luminosity increases. In particular, while the most rapid rotators (vsini>20 km/s) exhibit super-saturation in X-rays and H-alpha, this effect is not seen in the radio. We also find that ultracool dwarfs with vsini>20 km/s have a higher radio detection fraction by about a factor of 3 compared to objects with vsini<10 km/s. When measured in terms of the Rossby number (Ro), the radio activity-rotation relation follows a single trend and with no apparent saturation from G to L dwarfs and down to Ro~10^-3; in X-rays and H-alpha there is clear saturation at Ro<0.1, with super-saturation beyond M7. A similar trend is observed for the radio surface flux (L_rad/R^2) as a function of Ro. The continued role of rotation in the overall level of radio activity and in the fraction of active sources, and the single trend of L_rad/L_bol and L_rad/R^2 as a function of Ro from G to L dwarfs indicates that rotation effects are important in regulating the topology or strength of magnetic fields in at least some fully-convective dwarfs. The fact that not all rapid rotators are detected in the radio provides additional support to the idea of dual dynamo states.
WISE J104915.57$-$531906.1 is a L/T brown dwarf binary located 2pc from the Sun. The pair contains the closest known brown dwarfs and is the third closest known system, stellar or sub-stellar. We report comprehensive follow-up observations of this ne wly uncovered system. We have determined the spectral types of both components (L8+/-1, for the primary, agreeing with the discovery paper; T1.5+/-2 for the secondary, which was lacking spectroscopic type determination in the discovery paper) and, for the first time, their radial velocities (V_rad~23.1, 19.5 km/s) using optical spectra obtained at the Southern African Large Telescope (SALT) and other facilities located at the South African Astronomical Observatory (SAAO). The relative radial velocity of the two components is smaller than the range of orbital velocities for theoretically predicted masses, implying that they form a gravitationally bound system. We report resolved near-infrared JHK_S photometry from the IRSF telescope at the SAAO which yields colors consistent with the spectroscopically derived spectral types. The available kinematic and photometric information excludes the possibility that the object belongs to any of the known nearby young moving groups or associations. Simultaneous optical polarimetry observations taken at the SAAO 1.9-m give a non-detection with an upper limit of 0.07%. For the given spectral types and absolute magnitudes, 1Gyr theoretical models predict masses of 0.04--0.05 M_odot for the primary, and 0.03--0.05 M_odot for the secondary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا