ﻻ يوجد ملخص باللغة العربية
We have obtained deep NIR narrow and broad (J and Y) band imaging data of the GOODS-South field. The narrow band filter is centered at 1060 nm corresponding to redshifts $z = 0.62, 1.15, 1.85$ for the strong emission lines H$alpha$, $[$OIII$]$/H$beta$ and $[$OII$]$, respectively. From those data we extract a well defined sample ($M(AB)=24.8$ in the narrow band) of objects with large emission line equivalent widths in the narrow band. Via SED fits to published broad band data we identify which of the three lines we have detected and assign redshifts accordingly. This results in a well defined, strong emission line selected sample of galaxies down to lower masses than can easily be obtained with only continuum flux limited selection techniques. We compare the (SED fitting-derived) main sequence of star-formation (MS) of our sample to previous works and find that it has a steeper slope than that of samples of more massive galaxies. We conclude that the MS steepens at lower (below $M_{star} = 10^{9.4} M_{odot}$) galaxy masses. We also show that the SFR at any redshift is higher in our sample. We attribute this to the targeted selection of galaxies with large emission line equivalent widths, and conclude that our sample presumably forms the upper boundary of the MS. We briefly investigate and outline how samples with accurate redshifts down to those low stellar masses open a new window to study the formation of large scale structure in the early universe. In particular we report on the detection of a young galaxy cluster at $z=1.85$ which features a central massive galaxy which is the candidate of an early stage cD galaxy, and we identify a likely filament mapped out by $[$OIII$]$ and $Hbeta$ emitting galaxies at $z=1.15$.
ABRIDGED-This paper presents the first direct estimate of the 3D clustering properties of far-infrared sources up to z~3. This has been possible thanks to the Pacs Evolutionary Probe (PEP) survey of the GOODS South field performed with the PACS instr
The accurate measurement of stellar masses over a wide range of galaxy properties is essential for better constraining models of galaxy evolution. Emission line galaxies (ELGs) tend to have better redshift estimates than continuum-selected objects an
We compare the physical and morphological properties of z ~ 2 Lyman-alpha emitting galaxies (LAEs) identified in the HETDEX Pilot Survey and narrow band studies with those of z ~ 2 optical emission line galaxies (oELGs) identified via HST WFC3 infrar
We have used the Atacama Large Millimeter/submillimeter Array (ALMA) to carry out a search for CO (3$-$2) or (4$-$3) emission from the fields of 12 high-metallicity ([M/H]~$geq -0.72$,dex) damped Lyman-$alpha$ absorbers (DLAs) at $z approx 1.7-2.6$.
We derive the mean wavelength dependence of stellar attenuation in a sample of 239 high redshift (1.90 < z < 2.35) galaxies selected via Hubble Space Telescope (HST) WFC3 IR grism observations of their rest-frame optical emission lines. Our analysis