ﻻ يوجد ملخص باللغة العربية
SKA is a new technology radio-telescope array, about two orders of magnitude more sensitive and rapid in sky surveys than present instruments. It will probe the dark age of the universe, just afer recombination, and during the epoch of reionisation (z=6-15); it will be the unique instrument to map the atomic gas in high redshift galaxies, and determine the amount and distribution of dark matter in the early universe. Not only it will detect and measure the redshifts of billions of galaxies up to z=2, but also it will discover and monitor around 20 000 pulsars in our Milky Way. The timing of pulsars will trace the stretching of space, able to detect gravitational waves. Binary pulsars will help to test gravity in strong fields, and probe general relativity. These exciting perspectives will become real beyond 2020.
We review how the Square Kilometre Array (SKA) will address fundamental questions in cosmology, focussing on its use for neutral Hydrogen (HI) surveys. A key enabler of its unique capabilities will be large (but smart) receptors in the form of apertu
The Square Kilometre Array (SKA) is a planned large radio interferometer designed to operate over a wide range of frequencies, and with an order of magnitude greater sensitivity and survey speed than any current radio telescope. The SKA will address
HI 21~cm absorption spectroscopy provides an excellent probe of the neutral gas content of absorbing galaxies, yielding information on their kinematics, mass, physical size and ISM conditions. The high sensitivity, unrivaled frequency coverage and RF
The Square Kilometre Array will revolutionize pulsar studies with its wide field-of-view, wide-band observation and high sensitivity, increasing the number of observable pulsars by more than an order of magnitude. Pulsars are of interest not only for
The recent detections of extrasolar giant planets has revealed a surprising diversity of planetary system architectures, with many very unlike our Solar System. Understanding the origin of this diversity requires multi-wavelength studies of the struc