We study topological black hole solutions of the simplest quadratic gravity action and we find that two classes are allowed. The first is asymptotically flat and mimics the Reissner-Nordstrom solution, while the second is asymptotically de Sitter or anti-de Sitter. In both classes, the geometry of the horizon can be spherical, toroidal or hyperbolic. We focus in particular on the thermodynamical properties of the asymptotically anti-de Sitter solutions and we compute the entropy and the internal energy with Euclidean methods. We find that the entropy is positive-definite for all horizon geometries and this allows to formulate a consistent generalized first law of black hole thermodynamics, which keeps in account the presence of two arbitrary parameters in the solution. The two-dimensional thermodynamical state space is fully characterized by the underlying scale invariance of the action and it has the structure of a projective space. We find a kind of duality between black holes and other objects with the same entropy in the state space. We briefly discuss the extension of our results to more general quadratic actions.