ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical diode based on the chirality of guided photons

129   0   0.0 ( 0 )
 نشر من قبل Philipp Schneeweiss
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Photons are nonchiral particles: their handedness can be both left and right. However, when light is transversely confined, it can locally exhibit a transverse spin whose orientation is fixed by the propagation direction of the photons. Confined photons thus have chiral character. Here, we employ this to demonstrate nonreciprocal transmission of light at the single-photon level through a silica nanofibre in two experimental schemes. We either use an ensemble of spin-polarised atoms that is weakly coupled to the nanofibre-guided mode or a single spin-polarised atom strongly coupled to the nanofibre via a whispering-gallery-mode resonator. We simultaneously achieve high optical isolation and high forward transmission. Both are controlled by the internal atomic state. The resulting optical diode is the first example of a new class of nonreciprocal nanophotonic devices which exploit the chirality of confined photons and which are, in principle, suitable for quantum information processing and future quantum optical networks.



قيم البحث

اقرأ أيضاً

We investigate the electric quadrupole interaction of an alkali-metal atom with guided light in the fundamental and higher-order modes of a vacuum-clad ultrathin optical fiber. We calculate the quadrupole Rabi frequency, the quadrupole oscillator str ength, and their enhancement factors. In the example of a rubidium-87 atom, we study the dependencies of the quadrupole Rabi frequency on the quantum numbers of the transition, the mode type, the phase circulation direction, the propagation direction, the orientation of the quantization axis, the position of the atom, and the fiber radius. We find that the root-mean-square (rms) quadrupole Rabi frequency reduces quickly but the quadrupole oscillator strength varies slowly with increasing radial distance. We show that the enhancement factors of the rms Rabi frequency and the oscillator strength do not depend on any characteristics of the internal atomic states except for the atomic transition frequency. The enhancement factor of the oscillator strength can be significant even when the atom is far away from the fiber. We show that, in the case where the atom is positioned on the fiber surface, the oscillator strength for the quasicircularly polarized fundamental mode HE$_{11}$ has a local minimum at the fiber radius $asimeq 107$ nm, and is larger than that for quasicircularly polarized higher-order hybrid modes, TE modes, and TM modes in the region $a<498.2$ nm.
178 - Qasem Exirifard 2011
We report that a triangular Fabry-Perot resonator filled with a parity-odd linear anisotropic medium exhibiting the one-way light speed anisotropy acts as a perfect diode. A Linear crystal such as the nematic liquid crystals whose molecular structure s break parity can exhibit the one-way light speed anisotropy. The one-way light speed anisotropy also can be induced in a non-linear medium in the presence of constant electric and magnetic field strengths.
The optical binding forces between guided lightwaves in dielectric waveguides can be either repulsive or attractive. So far only attractive force has been observed. Here we experimentally demonstrate a bipolar optical force between coupled nanomechan ical waveguides. Both attractive and repulsive optical forces are obtained. The sign of the force can be switched reversibly by tuning the relative phase of the interacting lightwaves. This tunable, bipolar interaction forms the foundation for the operation of a new class of light force devices and circuits.
We fabricate an extremely thin optical fiber that supports a super-extended mode with a diameter as large as 13 times the optical wavelength, residing almost entirely outside the fiber and guided over thousands of wavelengths (5 mm), in order to coup le guided light to warm atomic vapor. This unique configuration balances between strong confinement, as evident by saturation powers as low as tens of nW, and long interaction times with the thermal atoms, thereby enabling fast and coherent interactions. We demonstrate narrow coherent resonances (tens of MHz) of electromagnetically induced transparency for signals at the single-photon level and long relaxation times (10 ns) of atoms excited by the guided mode. The dimensions of the guided modes evanescent field are compatible with the Rydberg blockade mechanism, making this platform particularly suitable for observing quantum non-linear optics phenomena.
A sharp resonance line that appears in three-photon transitions between the $^{1}S_{0}$ and $^{3}P_{0}$ states of alkaline earth and Yb atoms is proposed as an optical frequency standard. This proposal permits the use of the even isotopes, in which t he clock transition is narrower than in proposed clocks using the odd isotopes and the energy interval is not affected by external magnetic fields or the polarization of trapping light. The method has the unique feature that the width and rate of the clock transition can be continuously adjusted from the $MHz$ level to sub-$mHz$ without loss of signal amplitude by varying the intensities of the three optical beams. Doppler and recoil effects can be eliminated by proper alignment of the three optical beams or by point confinement in a lattice trap. The three beams can be mixed to produce the optical frequency corresponding to the $^{3}P_{0}$ - $^{1}S_{0}$ clock interval.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا