ترغب بنشر مسار تعليمي؟ اضغط هنا

ZFOURGE/CANDELS: On the Evolution of M* Galaxy Progenitors from z=3 to 0.5

128   0   0.0 ( 0 )
 نشر من قبل Casey Papovich
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Casey Papovich




اسأل ChatGPT حول البحث

Galaxies with stellar masses near M* contain the majority of stellar mass in the universe, and are therefore of special interest in the study of galaxy evolution. The Milky Way (MW) and Andromeda (M31) have present day stellar masses near M*, at 5x10^10 Msol (MW-mass) and 10^11 Msol (M31-mass). We study the typical progenitors of these galaxies using ZFOURGE, a deep medium-band near-IR imaging survey, which is sensitive to the progenitors of these galaxies out to z~3. We use abundance-matching techniques to identify the main progenitors of these galaxies at higher redshifts. We measure the evolution in the stellar mass, rest-frame colors, morphologies, far-IR luminosities, and star-formation rates combining our deep multiwavelength imaging with near-IR HST imaging from CANDELS, and far-IR imaging from GOODS-H and CANDELS-H. The typical MW-mass and M31-mass progenitors passed through the same evolution stages, evolving from blue, star-forming disk galaxies at the earliest stages, to redder dust-obscured IR-luminous galaxies in intermediate stages, and to red, more quiescent galaxies at their latest stages. The progenitors of the MW-mass galaxies reached each evolutionary stage at later times (lower redshifts) and with stellar masses that are a factor of 2-3 lower than the progenitors of the M31-mass galaxies. The process driving this evolution, including the suppression of star-formation in present-day M* galaxies requires an evolving stellar-mass/halo-mass ratio and/or evolving halo-mass threshold for quiescent galaxies. The effective size and star-formation rates imply that the baryonic cold-gas fractions drop as galaxies evolve from high redshift to z~0 and are strongly anticorrelated with an increase in the Sersic index. Therefore, the growth of galaxy bulges in M* galaxies corresponds to a rapid decline in the galaxy gas fractions and/or a decrease in the star-formation efficiency.



قيم البحث

اقرأ أيضاً

The rate of major galaxy-galaxy merging is theoretically predicted to steadily increase with redshift during the peak epoch of massive galaxy development ($1{leq}z{leq}3$). We use close-pair statistics to objectively study the incidence of massive ga laxies (stellar $M_{1}{geq}2{times}10^{10}M_{odot}$) hosting major companions ($1{leq}M_{1}/M_{2}{leq}4$; i.e., $<$4:1) at six epochs spanning $0{<}z{<}3$. We select companions from a nearly complete, mass-limited ($geq5{times}10^{9}M_{odot}$) sample of 23,696 galaxies in the five CANDELS fields and the SDSS. Using $5-50$ kpc projected separation and close redshift proximity criteria, we find that the major companion fraction $f_{mathrm{mc}}(z)$ based on stellar mass-ratio (MR) selection increases from 6% ($z{sim}0$) to 16% ($z{sim}0.8$), then turns over at $z{sim}1$ and decreases to 7% ($z{sim}3$). Instead, if we use a major F160W flux ratio (FR) selection, we find that $f_{mathrm{mc}}(z)$ increases steadily until $z=3$ owing to increasing contamination from minor (MR$>$4:1) companions at $z>1$. We show that these evolutionary trends are statistically robust to changes in companion proximity. We find disagreements between published results are resolved when selection criteria are closely matched. If we compute merger rates using constant fraction-to-rate conversion factors ($C_{mathrm{merg,pair}}{=}0.6$ and $T_{mathrm{obs,pair}}{=}0.65mathrm{Gyr}$), we find that MR rates disagree with theoretical predictions at $z{>}1.5$. Instead, if we use an evolving $T_{mathrm{obs,pair}}(z){propto}(1+z)^{-2}$ from Snyder et al., our MR-based rates agree with theory at $0{<}z{<}3$. Our analysis underscores the need for detailed calibration of $C_{mathrm{merg,pair}}$ and $T_{mathrm{obs,pair}}$ as a function of redshift, mass and companion selection criteria to better constrain the empirical major merger history.
We explore star-formation histories (SFHs) of galaxies based on the evolution of the star-formation rate stellar mass relation (SFR-M*). Using data from the FourStar Galaxy Evolution Survey (ZFOURGE) in combination with far-IR imaging from the Spitze r and Herschel observatories we measure the SFR-M* relation at 0.5 < z < 4. Similar to recent works we find that the average infrared SEDs of galaxies are roughly consistent with a single infrared template across a broad range of redshifts and stellar masses, with evidence for only weak deviations. We find that the SFR-M* relation is not consistent with a single power-law of the form SFR ~ M*^a at any redshift; it has a power-law slope of a~1 at low masses, and becomes shallower above a turnover mass (M_0) that ranges from 10^9.5 - 10^10.8 Msol, with evidence that M_0 increases with redshift. We compare our measurements to results from state-of-the-art cosmological simulations, and find general agreement in the slope of the SFR-M* relation albeit with systematic offsets. We use the evolving SFR-M* sequence to generate SFHs, finding that typical SFRs of individual galaxies rise at early times and decline after reaching a peak. This peak occurs earlier for more massive galaxies. We integrate these SFHs to generate mass-growth histories and compare to the implied mass-growth from the evolution of the stellar mass function. We find that these two estimates are in broad qualitative agreement, but that there is room for improvement at a more detailed level. At early times the SFHs suggest mass-growth rates that are as much as 10x higher than inferred from the stellar mass function. However, at later times the SFHs under-predict the inferred evolution, as is expected in the case of additional growth due to mergers.
We investigate the galaxy quenching process at intermediate redshift using a sample of $sim4400$ galaxies with $M_{ast} > 10^{9}M_{odot}$ between redshift 0.5 and 1.0 in all five CANDELS fields. We divide this sample, using the integrated specific st ar formation rate (sSFR), into four sub-groups: star-forming galaxies (SFGs) above and below the ridge of the star-forming main sequence (SFMS), transition galaxies and quiescent galaxies. We study their $UVI$ ($U-V$ versus $V-I$) color gradients to infer their sSFR gradients out to twice effective radii. We show that on average both star-forming and transition galaxies at all masses are not fully quenched at any radii, whereas quiescent galaxies are fully quenched at all radii. We find that at low masses ($M_{ast} = 10^{9}-10^{10}M_{odot}$) SFGs both above and below the SFMS ridge generally have flat sSFR profiles, whereas the transition galaxies at the same masses generally have sSFRs that are more suppressed in their outskirts. In contrast, at high masses ($M_{ast} > 10^{10.5}M_{odot}$), SFGs above and below the SFMS ridge and transition galaxies generally have varying degrees of more centrally-suppressed sSFRs relative to their outskirts. These findings indicate that at $zsim~0.5-1.0$ the main galaxy quenching mode depends on its already formed stellar mass, exhibiting a transition from the outside-in at $M_{ast} leq 10^{10}M_{odot}$ to the inside-out at $M_{ast} > 10^{10.5}M_{odot}$. In other words, our findings support that internal processes dominate the quenching of massive galaxies, whereas external processes dominate the quenching of low-mass galaxies.
Spectroscopic + photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift rang e 0<z<3. Separating early- and late-type galaxies on the basis of star-formation activity, we confirm that early-type galaxies are on average smaller than late-type galaxies at all redshifts, and find a significantly different rate of average size evolution at fixed galaxy mass, with fast evolution for the early-type population, R_eff ~ (1+z)^-1.48, and moderate evolution for the late-type population, R_eff ~ (1+z)^-0.75. The large sample size and dynamic range in both galaxy mass and redshift, in combination with the high fidelity of our measurements due to the extensive use of spectroscopic data, not only fortify previous results, but also enable us to probe beyond simple average galaxy size measurements. At all redshifts the slope of the size-mass relation is shallow, R_eff ~ M_star^0.22, for late-type galaxies with stellar mass >3x10^9 M_sol, and steep, R_eff M_star^0.75, for early-type galaxies with stellar mass >2x10^10 M_sol. The intrinsic scatter is <~0.2 dex for all galaxy types and redshifts. For late-type galaxies, the logarithmic size distribution is not symmetric, but skewed toward small sizes: at all redshifts and masses a tail of small late-type galaxies exists that overlaps in size with the early-type galaxy population. The number density of massive (~10^11 M_sol), compact (R_eff < 2 kpc) early-type galaxies increases from z=3 to z=1.5-2 and then strongly decreases at later cosmic times.
156 - Vivienne Wild 2016
We present the evolution in the number density and stellar mass functions of photometrically selected post-starburst galaxies in the UKIDSS Deep Survey (UDS), with redshifts of 0.5<z<2 and stellar masses logM>10. We find that this transitionary speci es of galaxy is rare at all redshifts, contributing ~5% of the total population at z~2, to <1% by z~0.5. By comparing the mass functions of quiescent galaxies to post-starburst galaxies at three cosmic epochs, we show that rapid quenching of star formation can account for 100% of quiescent galaxy formation, if the post-starburst spectral features are visible for ~250Myr. The flattening of the low mass end of the quiescent galaxy stellar mass function seen at z~1 can be entirely explained by the addition of rapidly quenched galaxies. Only if a significant fraction of post-starburst galaxies have features that are visible for longer than 250Myr, or they acquire new gas and return to the star-forming sequence, can there be significant growth of the red sequence from a slower quenching route. The shape of the mass function of these transitory post-starburst galaxies resembles that of quiescent galaxies at z~2, with a preferred stellar mass of logM~10.6, but evolves steadily to resemble that of star-forming galaxies at z<1. This leads us to propose a dual origin for post-starburst galaxies: (1) at z>2 they are exclusively massive galaxies that have formed the bulk of their stars during a rapid assembly period, followed by complete quenching of further star formation, (2) at z<1 they are caused by the rapid quenching of gas-rich star-forming galaxies, independent of stellar mass, possibly due to environment and/or gas-rich major mergers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا