ﻻ يوجد ملخص باللغة العربية
We present the results of paramagnetic LDA band structure calculations: band dispersions, densities of states and Fermi surfaces, for the new iron based high-temperature superconductor LiOHFeSe. Main structural motif providing bands in the vicinity of the Fermi level is FeSe layer which is isostructural to the bulk FeSe prototype superconductor. The bands crossing the Fermi level and Fermi surfaces of the new compound are typical for other iron based superconductors. Experimentally it was shown that introduction of Fe ions into LiOH layer gives rise to ferromagnetic ordering of the Fe ions at T$_C$=10K. To study magnetic properties of [Li$_{0.8}$Fe$_{0.2}$OH]FeSe system we have performed LSDA calculations for $sqrt 5 times sqrt 5$ superlattice and found ferromagnetism within the Li$_4$Fe(OH) layer. To estimate the Curie temperature we obtained Fe-Fe exchange interaction parameters for Heisenberg model from our LSDA calculations, leading to theoretical value of Curie temperature 10.4K in close agreement with experiment.
We report the phase diagram for the superconducting system (${^{7}}$Li${_{1-x}}$Fe${_{x}}$OD)FeSe and contrast it with that of (Li${_{1-x}}$Fe${_{x}}$OH)FeSe both in single crystal and powder forms. Samples were prepared via hydrothermal methods and
The phenomenon of phase separation into antiferromagnetic (AFM) and superconducting (SC) or normal-state regions has great implication for the origin of high-temperature (high-Tc) superconductivity. However, the occurrence of an intrinsic antiferroma
Understanding superconductivity requires detailed knowledge of the normal electronic state from which it emerges. A nematic electronic state that breaks the rotational symmetry of the lattice can potentially promote unique scattering relevant for sup
We report measurements of the London penetration depth [$Deltalambda(T)$] of the recently discovered iron-based superconductor (Li$_{1-x}$Fe$_x$)OHFeSe, in order to characterize the nature of the superconducting gap structure. At low temperatures, $D
We report the first Nernst effect measurement on the new iron-based superconductor LaO$_{1-x}$F$_{x}$FeAs $(x=0.1)$. In the normal state, the Nernst signal is negative and very small. Below $T_{c}$ a large positive peak caused by vortex motion is obs