ﻻ يوجد ملخص باللغة العربية
We calculate spectra of magnetic excitations in the spin-spiral state of perovskite manganates. The spectra consist of several branches corresponding to different polarizations and different ways of diffraction from the static magnetic order. Goldstone modes and opening of gaps at zero and non-zero energies due to the crystal field and the Dzyaloshinski-Moriya anisotropies are discussed. Comparing results of the calculation with available experimental data we determine values of effective exchange parameters and anisotropies. To simplify the spin-wave calculation and to get a more clear physical insight in the structure of excitations we use the {sigma}-model-like effective field theory to analyze the Heisenberg Hamiltonian and to derive the spectra.
Magnetic and magnetoelectric excitations in the multiferroic TbMnO_3 have been investigated at terahertz frequencies. Using different experimental geometries we can clearly separate the electro-active excitations (electromagnons) from the magneto-act
The magnetic structures which endow TbMnO$_3$ with its multiferroic properties have been reassessed on the basis of a comprehensive soft x-ray resonant scattering (XRS) study. The selectivity of XRS facilitated separation of the various contributions
Spin crossover is expected to enrich unusual physical states in various types of condensed matter. Through inelastic neutron scattering, we study the spin-state excitations in the canonical and advanced platform, LaCoO$_3$, and reveal that the spatia
Recently, oxide multiferroics have attracted much attention due to their large magnetoelectric effect which allows the tuning of magnetic properties with electric field and vice versa and open new venues for future spintronic applications such as mul
The search for topological spin excitations in recently discovered two-dimensional (2D) van der Waals (vdW) magnetic materials is important because of their potential applications in dissipation-less spintronics. In the 2D vdW ferromagnetic (FM) hone